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ABSTRACT 
 
 
  High Frequency (HF) radar backscatter instruments are being developed and 

tested in the marine science and defense science communities for their abilities to sense 

surface parameters remotely in the coastal ocean over large areas.  In the Navy context, 

the systems provide real-time mapping of ocean surface currents and waves critical for 

characterizing and forecasting the battle space environment.   

In this study, the performance of a network of four CODAR (Coastal Ocean 

Dynamics Application Radar) SeaSonde HF radars, using the Multiple Signal 

Classification (MUSIC) algorithm for direction finding, is described for the period 

between July to September 2003. Comparisons are made in Monterey Bay with moored 

velocity observations, with four radar baseline pairs, and with velocity observations from 

sixteen drifter deployments.  

All systems measure ocean surface current and all vector currents are translated 

into radial current components in the direction of the various radar sites. Measurement 

depths are ~1 m for the HF radar-derived currents, 12 to 20 m for the ADCP bin nearest 

to the surface at the M1 mooring site, and ~8 m for the drifter-derived velocity estimates. 

Comparisons of HF radar-M1 mooring buoy, HF radar-HF radar (baseline), and 

HF radar-drifter data yield improvements of –1.7 to 16.7 cm/s rms differences and –0.03 

to 0.35 correlation coefficients when measured antenna patterns are used. The mooring 

comparisons and the radar-to-radar baseline comparisons indicate angular shifts of 10˚ to 

30˚ for radial currents produced using ideal antenna patterns and 0˚ to 15˚ angular shifts 

for radial currents produced using measured patterns. The comparisons with drifter-

derived radial currents indicate that these angular biases are not constant across all look 

directions, even though the local antenna pattern distortions were taken into account 

through the use of measured antenna patterns. In particular, data from the SCRZ and 

MLNG radar sites show varied pointing errors across the range of angles covered. 
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I. INTRODUCTION  

A. HIGH FREQUENCY RADAR  
Since the first identification of the Doppler spectrum of sea echo by Crombie 

(1955), High Frequency (HF) radars have been developed mainly to measure surface 

current and to extract information about surface waves and winds from HF backscatter 

spectra (Paduan and Graber, 1997; Wyatt, 1997; Fernandez et al., 1997). The most 

common uses of HF radar systems are to produce the vector maps of the ~1 m deep 

currents over spatial scales ranging from hundreds of meters to hundreds of kilometers 

for near real-time applications (Stewart and Joy, 1974; Paduan and Graber, 1997).  

A single radar can observe only the component receding from or approaching the 

radar at a given bearing and range called the “radial” component.  For mapping radial 

current data, the system needs three pieces of information from each radar: range, speed, 

and bearing of the scattering source.  Two or more radars are needed for mapping vectors 

currents. 

To determine range, several methods exist related to the time delay of the 

scattered signal after transmission. Since the Doppler-frequency shift includes the speed 

of the reflecting ocean wave and the underlying current, differences between the 

measured speed and the known speed of the waves provide the speed of the underlying 

current. Two types of methods, called beam forming and direction finding, can determine 

the angle from which a return is coming. A beam forming system, such as the Ocean 

Surface Current Radar (OSCR; Hammond et al. 1987) and Wellen Radar (WERA; 

Gurgel et al. 1999) uses a linear array of receive antennae to steer the receive antennae 

look angle to different directions. In contrast, a direction finding system, such as the 

CODAR (Coastal Ocean Dynamics Application Radar) SeaSonde, uses the signal 

received by three different antennae, including two loop antennae oriented ninety degrees 

to each other, and a monopole to determine the angle. When the signals received by the 

two loop antennae are normalized with the monopole signal, the arctangent of two 

crossed-loop signal ratio is used to determine the direction of the signal (Kohut and 

Glenn, 2003). In practice, a much more robust algorithm called Multiple Signal 
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Classification (MUSIC; Schmidt 1986) is used to determine bearing. This MUSIC 

algorithm enables the CODAR configuration to resolve more complicated ocean surface 

current. 

B.  MUSIC ALGORITHM AND ANTENNA PATTERNS 
The CODAR SeaSonde systems use the MUSIC algorithm for direction finding, 

which requires accurate knowledge of the angular response pattern of each antenna 

element.  Errors in the antenna patterns translate into errors in angular placement of radial 

current values around a given range cell. It is common to use one of two methods to 

ascertain the angular beam patterns: 1) assume the theoretical or “ideal” patterns based on 

the antenna design or 2) measure the actual antenna patterns after installation. The ideal 

patterns of the two cross-loop antennae are cosine-dependent and oriented orthogonal to 

each other. The measured patterns of the receive antenna elements can be obtained by 

moving a small battery-operated transponder around the shore site on a boat or, 

sometimes, by foot if space permits. Figure 1, 2, 3, and 4 illustrate the ideal and measured 

patterns of the four radar sites in Monterey Bay.  The radial current vectors toward each 

radar site using the ideal antenna patterns (black arrows) and the measured (red arrows) 

are shown in the same figures. 

The antenna patterns are sensitive to electromagnetic interference from the 

surrounding environment. Specifically, the efficiency of the monopole ground plane and 

whether the local environment is clear or cluttered with respect to conducting elements in 

the near field of the antenna, play important roles in antenna pattern distortion (Kohut 

and Glenn, 2003).  If the actual beam patterns on site differ from the assumed patterns, 

this can introduce an angular bias as large as 35 degrees if they are not taken into account 

(Barrick and Lipa, 1986). Also Kohut and Glenn (2003) show that system accuracy 

depends on the distortion of the measured pattern. 

C. EVALUATION OF CODAR SEASONDE HF RADAR IN MONTEREY 
BAY 

Validation of the algorithms used to produce current maps from HF radar 

backscatter is needed to create a better understanding of the system among the user 

community. The first validation studies were conducted using velocity estimates from 

drifters to compare with those from HF radar measurements (Stewart and Joy, 1974; 
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Barrick and Lipa, 1977; Frisch and Weber, 1980). Some later investigations compared 

the HF radar data with bottom-mounted Acoustic Doppler Current Profilers (ADCP) or 

moored instruments finding differences ranging from 9 to 17 cm/s (review by Chapman 

et al., 1997).  A more recent study shows that the pointing error for a given radar is not 

constant but varied with bearing when using the ideal pattern data in the MUSIC 

algorithm of the CODAR SeaSonde HF radar (Emery et al., 2003).   

When evaluating the accuracy of a new instrument, it is important that the two 

instruments are measuring the same physical quantities (Chapman et al., 1997). 

Differences in these comparisons are expected due to differences in time averaging, the 

depth of the observation, and geographical averaging in addition to inaccuracies of the 

instruments themselves.  

The present study focuses on validating CODAR SeaSonde HF radar in 

comparison with moored velocity observations, with four radar baseline pairs, and with 

velocity observations from sixteen drifter deployments to understand the error in the 

CODAR SeaSonde HF radar and its MUSIC algorithm.  First, accuracies of the direction-

finding process of the MUSIC algorithm in ideal and measured patterns at one mooring 

location are estimated by comparing various statistical values of currents at selected 

locations from the HF radars with in-situ currents measured by a moored ADCP on the 

M1 buoy, located at the mouth of Monterey Bay. Through a comparison of M1 buoy data 

and HF radar data, some improvements in the statistical values are expected when 

shifting from data produced using ideal antenna patterns to data produced using measured 

antenna patterns.  This is because it is expected that the measured antenna patterns will 

increase the accuracy of the direction finding.  

Second, a comparison of radial currents on the baseline between two HF radar 

sites is made.  Both ideal and measured antenna pattern data are used.  Data from 

different angles for opposite radar sites are compared in the method of Melton (1995).  

These baseline analyses between the same HF radar systems provide the system 

accuracies including their direction finding capability.  Also, use of multiple baseline 

pairs helps to determine if the pointing errors at one site are similar at different angles.  
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As an example, a comparison of the SCRZ radar site to PPIN, NPGS, and MLNG radar 

sites shows different pointing errors in direction finding at each site.  

Lastly, HF radar data from ideal and measured patterns are compared with 

currents from surface drifters deployed in Monterey Bay.  The drifter data distribution is 

scattered across Monterey Bay.  Due to this scattered distribution, it is possible to see the 

statistical values at several angles from one radar site.  Also, statistical changes can be 

seen at each angle from the ideal to the measured patterns, and the variations of these 

statistical values within certain angular ranges may also be seen through these 

comparisons. 

The HF radar validation results presented here investigate and quantify through 

the comparison of moored ADCP data, baselines, and drifters, how the pointing errors 

vary at each angle of a radar site in both ideal and measured antenna patterns.   The 

findings are presented after a brief summary of HF radar systems as background 

information.  Chapter II outlines the data collection activities used in this investigation. 

Chapter III addresses the methods of data analysis and the results of each comparison. 

Chapter IV presents the discussion and summary of this work.  
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II. DATA COLLECTION 

A. AUTONOMOUS OCEAN SAMPLING NETWORK (AOSN) PROJECT 
The Autonomous Ocean Sensing Network (AOSN) in Monterey Bay used a 

variety of modern platforms such as gliders, Autonomous Underwater Vehicles (AUVs), 

drifters, floats, satellites, ships, moorings, and aircraft to produce a comprehensive view 

of the ocean. As a second field test for the AOSN program, a month-long experiment was 

conducted to study upwelling features in the Monterey Bay during the summer of 2003. 

More information is available at the Monterey Bay Aquarium Research Institute 

(MBARI) website (http://www.mbari.org/aosn/).  This experiment used data from the HF 

radars, M1 buoy, and drifters.  Figure 5 graphically illustrates the locations of the four HF 

radar sites, the M1 buoy, and drifter trajectories, while Table 1 summarizes the data that 

were used in the analyses presented here.  

B.  HF RADAR 
CODAR-Type HF Radar has been employed around Monterey Bay, CA, to 

measure ocean-surface currents since February 1992. These instruments are located at 

sites near the Naval Postgraduate School (NPGS) broadcasting at the frequency of 13.5 

megahertz (MHz), Point Pinos (PPIN) at 13.2 MHz in the south, near Moss Landing 

(MLNG) at 24.6 MHz in the east, and near Santa Cruz (SCRZ) at 12.2 MHz on the 

northern shore of Monterey Bay.  Different frequencies among the radar sites are 

designed to transmit signals without interference. The Bragg wavelength of the NPGS, 

PPIN and SCRZ sites is ~12 m and ~6 m at the MLNG site. The radial current velocity of 

the ocean surface is found from the difference between the Doppler shift of the returned 

signal and the expected Doppler shift of the ocean-surface gravity wave.   

Each radar site has a transmit antenna, a receive antenna, radar electronics, and a 

computer for system control and data logging. The antennae were installed as close to the 

shore as possible but separated from each other. The data of each radar site are monitored 

and transmitted to a computer at NPGS Oceanography Department for current mapping 

in the Monterey bay.  The near real-time observations of the currents in the Monterey 

Bay are available at the NPGS Oceanography Department website 

(http://www.oc.nps.navy.mil/~cook/Real/Totals/). 
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The HF data is a one-hour mean measurement of thirty minutes before and after 

each hour and has a radial speed toward or away from each radar site measured in cm/s. 

For the purpose of this study, ideal and measured pattern data from each radar site from 

22 July to 9 September 2003 are used. A total of four paired mooring-HF radar, HF-HF 

radar, and drifter-HF radar time series were available with maximum record lengths 

exceeding 50 days and minimum record lengths of 21 days. 

C.  M1 BUOY 
The M1 buoy is an instrumented mooring maintained by MBARI and located at 

36.744°N, 122.021°W near the mouth of Monterey Bay. The buoy is anchored in 1,000 m 

of water and was established as part of a network designed to provide continuous in-situ 

observations of physical, chemical, and biological properties over long periods of time.  

The M1 mooring carries downward-looking Acoustic Doppler Current Profiler 

(ADCP), which separates the current measurements into 8-m depth bins and returns an 

average value for each bin. The shallowest good bin measures currents between 12 and 

20 meters, while the deeper bins extend to 500 m. The ADCP is programmed to take a 

three–minute measurement once every hour. 

For more accurate current estimates, Global Positioning System (GPS) data on the 

movement of the M1 buoy was used to correct the U and V velocity components of the 

first ADCP current bin for the period from 23 July to 9 September 2003. 

D. DRIFTER 
Four drifters were deployed on the northern end of Monterey Bay from 11 August 

to 5 September 2003. When a drifter made its way across to the other side of the bay, it 

was recovered and redeployed to a new position in the northern end of Monterey Bay: 

Each drifter was relocated four times for a total of sixteen measured drifts.  

The drifters were equipped with differential global positioning system (DGPS) 

navigation to obtain improved position accuracy in conjunction with a Radio Direction 

Finding (RDF) beacon. The drifters were designed to be surface-level Lagrangian drifters 

moving with an 8 m depth current speed.   Figure 6 shows a drifter with its drogue 

stretched out along the ocean surface in Monterey Bay shortly after deployment. 
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Instrument Period Measured 

Depth 

Measured 

Period 

Data Interval 

HF Radar 2003. 07. 22. ~ 09. 09. ~ 1 m      1 hour Hourly 

ADCP of 

M1 Buoy 

2003. 07. 23. ~ 09. 09. 12 – 20 m      3 minutes Hourly 

Drifter 2003. 08. 11 ~ 09. 05. ~ 8 m      1 hour Hourly 

 
Table 1. Summary of the Data Used for Analysis 
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III. DATA ANALYSIS AND RESULTS 

A. COMPARISON WITH M1 BUOY ADCP DATA 
Ideal and measured patterns of radial surface current data from each site were 

compared with moored current-meter data from the M1 buoy.  To compare radials from 

HF radar with current measurements from the mooring, the components of moored 

current velocity 1MU  and 1MV  were translated into radial current components in the 

direction of the HF radar,  

αα sincos 111 ×+×=′ MMM VUU      (1)  

where, α is the angle of the M1 buoy to the radar sites, 1MU  and 1MV  are the east and 

north mooring current speed vectors, and 1MU ′  is the radial speed of the M1 buoy toward 

the HF radar site.  

Various statistical analyses were performed for each pair of radar and mooring 

time series: correlation coefficient, rms difference, slope and intercept, and residual rms 

difference. The correlation coefficient as well as other statistical data was computed 

between the HF radar and the M1 buoy radial velocity for the angle of the closest HF 

radar data point to the M1 buoy and for other angles with the same distance (i.e., range) 

but different angles from the HF radar site (see Figure 7). The matrix laboratory 

(MATLAB) code of corrcoef was used to compute the correlation coefficient.  Also, the 

rms differences between the HF radar and the M1 buoy radial data were computed as, 

2
1

1
)( iUiUdifferencerms M

n

i
hf ′−′= ∑

=

     (2) 

and using the least square fitting, the slope and intercept of the scatter plot were 

computed as, 

bUaU Mhf +′=′ 1        (3) 

where a and b represent the slope and y intercept, respectively. Additionally, the residual 

rms difference was computed using the slope and intercept above to form 
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bUaU MTest +′=′ 1        (4) 

with the residual rms differences between the HF radar and the M1 buoy radial data 

computed as, 

2

1
)'( iUiUdifferencermsresidual Test

n

i
hf∑

=

−′= .   (5) 

This residual rms difference is meant to account for the effect of the surface shear, 

thus providing information that is supplementary to the direct rms difference between the 

radar observations at 1 m depth and the deeper moored (or drifting buoy) observations.  

All the numerical results are addressed in the Appendix. 

1. M1 Buoy vs. SCRZ HF RADAR  
Radial angles of SCRZ radar site and the mooring watch circle (red), indicated by 

the GPS positions of the M1 buoy during the observation period, are presented in Figure 

7.  There is a two-degree difference between the ideal and measured grid data points as 

obtained from the SCRZ radar site due to the different setting of angular interval. 

Figure 8 shows the correlation coefficients and the rms differences between the 

HF radial data using the ideal and measured antenna pattern data plotted against the radial 

component of the M1 buoy data. In the ideal pattern, the maximum value of the 

correlation coefficient, 0.62, is found at the angle of –68o, and the minimum value of the 

rms difference, 15.2 cm/s, is found at –58o. In the measured pattern, the maximum value 

of the correlation coefficient, 0.65, is found at the angle of –90o, and the minimum value 

of the rms difference, 15.5 cm/s, is found at –70o. The values of the maximum correlation 

coefficient and the minimum rms difference show a minor difference between the two. 

However, the angles detecting the maximum correlation coefficient and minimum rms 

difference in the ideal pattern data are shifted about 10° to 20° from the angle of the M1 

buoy.  Also, the angles detecting the maximum correlation coefficient and the minimum 

rms difference in the measured pattern data are shifted about 10° from the angle of the 

M1 buoy. 

Scatter plots of the ideal and measured data were graphed against the M1 buoy 

radial data (Figure 9).  The ideal data at –78o gives a slope of 0.7 and an intercept of 9.52 
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(1073 observations).  The measured data at 80o gives a slope of 0.93 and an intercept of 

7.96 (942 observations).  A comparison of the slopes of the ideal and measured data 

shows that the measured data is more accurate than the ideal data. 

2. M1 Buoy vs. MLNG HF RADAR  
The radial angles of the MLNG radar site and the mooring watch circle (red) are 

presented in Figure 10.  There is no difference between the ideal and measured grid data 

points as measured from the MLNG radar site. 

Figure 11 shows the correlation coefficients and rms difference between the HF 

radial data using the ideal and measured pattern data plotted against the radial component 

of the M1 buoy data. In the ideal pattern, the maximum value of the correlation 

coefficient, 0.49, is found at the angle of 215o, and the minimum value of the rms 

difference, 12.7 cm/s, is found at 210o. In the measured pattern, the maximum value of 

the correlation coefficient, 0.44, is found at the angle of 205o, and the minimum value of 

the rms difference, 12.4 cm/s, is found at 200o. The values of the maximum correlation 

coefficient and the minimum rms difference show a minor difference in the two. 

However, the angles detecting the maximum correlation coefficient and the minimum 

rms difference in the ideal pattern data are shifted about 10° to 15° from the angle of the 

M1 buoy.  Also, the angles detecting the maximum correlation coefficient and the 

minimum rms difference in the measured pattern data are shifted about 5° from the angle 

of the M1 buoy. 

The scatter plots of the ideal and measured data were graphed against the M1 

buoy radial data (Figure 12).  The ideal data at 200o gives a slope of 0.21 and intercepts 

of –4.41 (1041 observations).  The measured data at 200o gives a slope of 0.45 and an 

intercept of –1.43 (973 observations).  Comparing the slopes of ideal and measured data 

shows that the measured data is more accurate compared to the ideal data.  However, the 

statistical values are relatively low at the MLNG radar site.  This may be due, in part, to 

the fact that the magnitudes of the radial current components, as measured from the 

MLNG location, are relatively weak. 
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3. M1 Buoy vs. NPGS HF RADAR  
The radial angles of the NPGS radar site and the mooring watch circle (red) are 

presented in Figure 13.  There is a one-degree difference between the ideal and measured 

grid data points as measured from the NPGS radar site due to the different setting of 

angular interval used in the radial processing. 

Figure 14 shows the correlation coefficients and the rms difference between the 

HF radial data using the ideal and measured pattern data plotted against the radial 

component of the M1 buoy data. In the ideal pattern, the maximum value of the 

correlation coefficient, 0.57, is found at the angle of 161o, and the minimum value of the 

rms difference, 14.6 cm/s, is found at 146o. In the measured pattern, the maximum value 

of the correlation coefficient, 0.59, is found at the angle of 135o, and the minimum value 

of the rms difference, 14.9 cm/s, is found at 140o. The values of the maximum correlation 

coefficient and the minimum rms difference show a minor difference in the two. 

However, the angles detecting the maximum correlation coefficient and the minimum 

rms difference in the ideal pattern data are shifted about 15° to 30° from the angle of the 

M1 buoy.  Also, the angles detecting the maximum correlation coefficient and the 

minimum rms difference in the measured pattern data are shifted about 5o to 10° from the 

angle of the M1 buoy. 

The scatter plots of the ideal and measured data were graphed against the M1 

buoy radial data (Figure 15).  The ideal data at 131o gives a slope of 0.28 and intercepts 

of 0.48 (637 observations).  The measured data at 130o gives a slope of 0.94 and an 

intercept of -6.24 (822 observations).  Comparing the slopes of the ideal and the 

measured data shows that the measured data is more accurate than the ideal data. Note 

that there is a positive improvement in the correlation coefficient with 0.32, but a 

worsening in the rms difference with –0.2 cm/s. 

4. M1 Buoy vs. PPIN HF RADAR  

Radial angles of the PPIN radar site and the mooring watch circle (red) are 

presented in Figure 16. A wide circle (expanded) view of the M1 buoy positions with 

respect to the PPIN HF radar grid points is shown in Figure 17.  The mean position of the 

M1 buoy is located at the center between the two HF radar range arcs shown in the 

figure. The grid points on the shorter-range arc were used for the comparison due to the 
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fact that more than 63 % of the M1 locations were closer to that range arc.  There is no 

angle difference between the ideal and measured grid data points as measured from the 

PPIN radar site. 

Figure 18 shows the correlation coefficients and the rms differences between the 

HF radial data using the ideal and measured pattern data plotted against the radial 

component of the M1 buoy data. For the ideal pattern, the maximum value of the 

correlation coefficient, 0.63, is found at the angles of 131o, 136o, and 141o, and the 

minimum value of the rms difference, 14.0 cm/s, is found at 151o. In the measured 

pattern, the maximum value of the correlation coefficient, 0.62, is found at the angles of 

121o and 126o, and the minimum value of the rms difference, 14.5 cm/s, is found at 136o. 

The values of the maximum correlation coefficient and the minimum rms difference 

show a minor difference. However, the angles detecting the maximum correlation 

coefficient and the minimum rms difference in the ideal pattern data are shifted about 10° 

to 30° from the angle of the M1 buoy.  Also, the angles detecting the maximum 

correlation coefficient and the minimum rms difference in the measured pattern data are 

shifted about 0o to 15° from the angle of the M1 buoy. 

The scatter plots of the ideal and data were graphed against the M1 buoy radial 

data (Figure 19).  The ideal measured data at 121o gives a slope of 0.91 and intercepts of -

6.71 (884 observations).  The measured data at 121o gives a slope of 0.95 and an intercept 

of 6.47 (1076 observations).  A comparison of the slopes of ideal and measured data 

shows that the measured data is more accurate than the ideal data. 

5. Summary from HF Radar - M1 Mooring Buoy Comparison 
Another recent investigation compared the HF radar radial current components 

with those at 3.2 m depth from a bottom-mounted ADCP yielding rms speed differences 

of 7 to 19 cm/s (Emery et al., 2003).   In this study, the M1 buoy measuring depths were 

from 12 to 20 meters.  Due to the difference of the measured depths between the previous 

investigation and this study, general statistical data shows relatively larger differences 

than other ADCP comparisons that were measured from a depth of about 1 to 10 meters. 

According to the HF radar – M1 buoy comparisons, results using the measured 

patterns at all four radar sites showed improved statistical values compared with results 
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using the ideal patterns at the angle looking toward the M1 mooring, except for the NPGS 

rms difference as shown in Table 2. Summary comparisons of the PPIN data show a 

slight improvement from the ideal to the measured data in the direction of the M1 buoy.  

The NPGS correlation coefficient shows a large improvement from the ideal to the 

measured data in the direction of the M1 buoy. 

Moss Landing has the lowest correlation coefficient and the lowest rms difference 

of all four sites.  This may be explained by the dominant current pattern in the region 

around Monterey Bay.  In general, the current moves back and forth, north to south in the 

directions approaching or receding from PPIN or SCRZ.  This current flow will give a 

large radial velocity at those sites compared to the Moss landing site, which is relatively 

perpendicular to the current flow. 

All radar sites exhibited angular offsets relative to the direction of the M1 

mooring as inferred by the angle of maximum correlation or the angle of the minimum 

rms difference.  Angle shifts of 10˚ to 30˚ were obtained using the ideal patterns. Angle 

shifts obtained using the measured antenna patterns were, in general, smaller but shifts of 

5˚ to 15˚ still exist, even though the local antenna pattern distortion was taken into 

account through the use of measured antenna patterns.  
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R/D site 
Corr. 
Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) # of obs 

Angle of 
R/D site 

Angle 
Shift 

0.5 18.9 16.9 1073 -78˚  
0.42 15.2 12.9 1122 -58˚ 10˚ 

Ideal 0.62 18.4 15.7 1126 -68˚ 10˚ 
0.62 18.1 16.5 942 -80˚  
0.51 15.5 14.2 1124 -70˚ 10˚ 

Measured 0.65 20.6 17.6 968 -90˚ 10˚ 

SCRZ 

Improvement 0.12 0.8 0.4    
0.14 15.5 13. 4 1041 200˚  
0.49 12.8 12.3 957 215˚ 15˚ 

Ideal 0.43 12.7 12.2 1001 210˚ 10˚ 
0.34 12.4 11.3 973 200˚  

Measured 0.44 13.0 12.2 860 205˚ 5˚ 

MLNG 

Improvement 0.2 2.9 2.1    
0.25 17.4 13.1 637 131˚  
0.57 16.0 15.0 808 161˚ 30˚ 

Ideal 0.45 14.6 13.5 836 146˚ 15˚ 
0.57 17.6 16.6 822 130˚  
0.53 14.9 14.5 616 140˚ 10˚ 

Measured 0.59 15.8 14.7 837 135˚ 5˚ 

NPGS 

Improvement 0.32 -0.2 -3.5    
0.58 18.3 17.2 884 121˚  
0.58 14.0 13.2 1023 151˚ 30˚ 

Ideal 0.63 15.8 14.4 1018 141˚ 20˚ 
0.62 16.6 15.5 1076 121˚  

Measured 0.51 14.5 13.5 1007 136˚ 15˚ 

PPIN 

Improvement 0.04 1.7 1.7    
 

Table 2. Summary of Comparison Statistics for HF Radar vs. M1 Mooring Radial 
Current Speed Pairs  

 

B. BASELINE ANALYSIS 

M1 buoy data comparisons show that the radial current data obtained using 

measured patterns have better statistical performance than those obtained using ideal 

patterns.  However the direction-finding technique still had errors in the range of 5o to 15o 

using the measured patterns. In this section, a second technique is used to investigate 

radar performance by comparing observations from radar pairs along the baseline 

connecting the two radar locations.  Through these baseline comparisons, the direction-

finding performance can be measured to determine if errors are still implied for radar-to-

radar comparisons, which, unlike the mooring observations, measure exactly the same 

vertical and horizontal scales. 
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Four radar baselines exist in the Monterey Bay HF radar network: SCRZ – 

MLNG, SCRZ – NPGS, SCRZ – PPIN, and MLNG – PPIN baseline. The direction-

finding performance of the ideal antenna patterns and the measured patterns using the 

MUSIC algorithm can be evaluated by comparing of the radial speed provided by two 

different sites along any baseline. Theoretically, the radial speed at the same grid point on 

the baseline would have the same magnitude but the opposite sign. As an example, one 

site would indicate that the given current was receding (negative sign), while the opposite 

site of the baseline should indicate that the current was approaching (positive sign). 

Figure 20 illustrates a baseline overlaid between the SCRZ radar site and the 

MLNG radar site along with the relative positions and radial grid points from each radar 

site. The grid points of the SCRZ, NPGS, and PPIN sites were configured with 3 km 

increments in range and 5° increments in azimuth (angle), whereas the grid points of the 

MLNG site were configured with 1.5 km increments in range and 5° increments in 

azimuth. The center grid point pairings on the baselines between radar sites are shown on 

the figures below that accompany the descriptions of the four different baseline 

comparisons.  These pairings were expected to provide the best agreement between radial 

currents measured at the individual radar sites. 

Once the best grid point pairing were established, analyses were conducted by 

holding one grid point of the best grid point pairing constant and comparing radial values 

from that site to radial values from all angles at the same range from the opposite site. For 

instance, along the SCRZ-PPIN baseline, data from one 18 Km radial bin of the best grid 

point pairing emanating from SCRZ were compared with data from several 18 Km radial 

bins emanating from PPIN.  Once the individual radial current data sets were selected, the 

same statistical methods were used to document the baseline comparisons, as were used 

with the M1 buoy data comparisons described above. 

1. Santa Cruz-Moss Landing Baseline 

Figure 20 illustrates a baseline overlaid between the SCRZ radar site and the 

MLNG radar site.  The baseline angle to SCRZ (MLNG) site from MLNG (SCRZ) is 

147º (-33o).  For the comparison of data from the best grid point bin of SCRZ and the 

MLNG measured radial bins, the expected highest correlated and the lowest rms 



17 

difference pairing would be the best grid point pairing of 145º/15 km from MLNG. The 

upper panel of Figure 21 illustrates the result, namely that the grid point of 160º has the 

highest correlation and the lowest rms difference, although the slow change of correlation 

and rms difference from 150º to 180º makes it difficult to choose the best angle for the 

comparisons in this case. Nonetheless, a 15º discrepancy existed from the MLNG site.  

Looking from the opposite direction, the comparison of the best grid point bin of 

MLNG with several SCRZ measured radial bins is expected to have the highest 

correlated and lowest rms difference at the best grid point pairing of -35º/15 km from 

SCRZ. The lower panel of Figure 21 graphically illustrates that the expected best grid 

point pairing does not have the highest correlation or the lowest rms difference. SCRZ 

radial bin of the best pairing has the highest correlation and the lowest rms difference at –

25º as indicated by the relatively sharp curves on the figure. Thus a clear 10º pointing 

discrepancy existed as seen from the SCRZ site. 

The scatter plots of the ideal and measured radial baseline data are presented in 

Figure 22.  The ideal data at -33o from the SCRZ radar site and 145o from the MLNG 

radar site gives a slope of 0.75 and intercept of –1.3 (718 observations).  The measured 

data at -35o from the SCRZ radar site and 145o from the MLNG radar site gives a slope of 

0.63 and an intercept of –3.8 (720 observations).  A comparison of the ideal and 

measured scatter plots shows the surprising result that the ideal data is slightly more 

accurate than the measured data, which is not expected. 

2. Santa Cruz-NPGS Baseline  
Figure 23 illustrates a baseline overlaid between the SCRZ radar site and the 

NPGS radar site, and further shows the baseline angle to SCRZ (NPGS) site from NPGS 

(SCRZ) is 114º (-66o).  For the comparison of the best grid point bin of SCRZ and the 

NPGS measured radial bins, the expected highest correlated and the lowest rms 

difference pairing would be the best grid point pairing of 115º/21 km from NPGS. The 

upper panel of Figure 24 illustrates the result that, instead, the 110º grid point has the 

highest correlation and the lowest rms difference. In this case, the observed best pairing 

at 110º is indicated by a relatively sharp drop of rms difference, as is seen in the figure. 

Thus, a 5º pointing discrepancy existed from the NPGS site. 
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For the comparison of the expected best grid point bin of NPGS and the SCRZ 

measured radial bins, the highest correlated and the lowest rms difference pairing would 

be expected to be found at the best grid point pairing of -65º/21 km from SCRZ. The 

lower panel of Figure 24 graphically illustrates the result that the best grid point pairing 

does not have the highest correlation or the lowest rms difference. Instead, the SCRZ 

radial bin has the highest correlation and the lowest rms difference at –70º as indicated by 

the relatively sharp curves in the figure. Thus, a 5º pointing discrepancy existed from the 

SCRZ site. 

The scatter plots of the ideal and measured radial baseline data are presented in 

Figure (25).  The ideal data at -68o from the SCRZ radar site and 116o from the NPGS 

radar site gives a slope of 0.28 and an intercept of –5.5 (409 observations).  The 

measured data at -65o from the SCRZ radar site and 115o from the NPGS radar site gives 

a slope of 0.98 and an intercept of 3.1 (778 observations).  A comparison of the scatter 

plots of the ideal and the measured data shows that the measured data is more accurate 

than the ideal data as expected. 

3. Santa Cruz-Point Pinos Baseline  
Figure 26 illustrates a baseline overlaid between the SCRZ radar site and the 

PPIN radar site and the baseline angle to SCRZ (PPIN) site from PPIN (SCRZ) is 109º (-

71o).  For the comparison of the best grid point bin of SCRZ and the PPIN measured 

radial bins, the expected highest correlated and the lowest rms difference pairing would 

be the best grid point pairing of 106º/18 km from PPIN. The upper panel of Figure 27 

illustrates the result that the grid point at 111º has the highest correlation and the lowest 

rms difference as exhibited by the relatively sharp extrema in the figure. Thus, a 5º 

pointing discrepancy existed from the perspective of the PPIN site. 

For the comparison of the best grid point bin of PPIN and the SCRZ measured 

radial bins, the highest correlated and the lowest rms difference pairing would be 

expected to be found at the best grid point pairing of -70º/18 km from SCRZ. The lower 

panel of Figure 27 illustrates the result that the grid point at -70º does, indeed, exhibit the 

highest correlation and lowest rms difference as expected with relatively sharp extrema at 

that angle providing confidence in the result. Therefore, there is no angular shift as 

viewed from the PPIN site. 
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The scatter plots of the ideal and measured baseline data are shown in Figure 28.  

The ideal data at -73o from the SCRZ radar site and 106o from the PPIN radar site gives a 

slope of 0.69 and an intercept of 9.7 (696 observations).  The measured data at -70o from 

the SCRZ radar site and 106o from the PPIN radar site gives a slope of 0.8 and an 

intercept of 3.61 (791 observations).  A comparison of the scatter plots of the ideal and 

the measured data shows that the measured data is more accurate than the ideal data, as 

expected. 

4. Moss Landing-Point Pinos Baseline  
Figure 29 illustrates the final baseline pairing between the MLNG radar site and 

the PPIN radar site.  The baseline angle to MLNG (PPIN) site from PPIN (MLNG) is 55º 

(235o).  For the comparison of the best grid point bin of MLNG and the PPIN measured 

radial bins, the expected highest correlated and the lowest rms difference pairing would 

be the best grid point pairing of 56º/12 km from PPIN. The upper panel of Figure 30 

illustrates the result that the grid point at 56º does, indeed, have the highest correlation 

and the lowest rms difference.  However, the slow change of correlation and the rms 

difference from 46º to 66º makes it difficult to unambiguously choose the best fitted 

angle.  The results support the conclusion that there is no angular shift viewed from the 

PPIN site. 

For the comparison of the best grid point bin of PPIN and the MLNG measured 

radial bins, the highest correlated and the lowest rms difference pairing would be 

expected to be found at the best grid point pairing of 235º/10.5 km from the MLNG site. 

The lower panel of Figure 30 graphically illustrates these results that the best grid point 

pairing does not have the highest correlation or the lowest rms difference.  The MLNG 

radial bin of the best pairing has the highest correlation and the lowest rms difference at 

230º as indicated in the figure. Thus a 5º pointing discrepancy exists as viewed from the 

MLNG site. 

The scatter plots of the ideal and measured baseline data are shown in Figure 31.  

The ideal data at 235o from the MLNG radar site and 56o from the PPIN radar site gives a 

slope of 0.56 and an intercept of 1.1 (503 observations).  The measured data at 235o from 

the MLNG radar site and 56o from the PPIN radar site gives a slope of 0.66 
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and an intercept of 1.1 (790 observations).  A comparison of the scatter plots of the ideal 

and the measured data shows that the measured data is more accurate than the ideal data 

as expected. 

5. Summary from Baseline Comparison 
According to the baseline comparisons, radial current data computed using the 

measured antenna patterns show improved statistical values compared with results based 

on the ideal antenna patterns.  There is one exception for the SCRZ-MLNG baseline for 

which the results are similar, as shown in Table 3. Relatively large improvement is seen 

for the SCRZ-NPGS baseline when measured antenna patterns are used. 

 

Baseline 
Corr. 
Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept 

# of 
obs 

Ideal 0.63 11.2 10.8 0.75 -1.3 718 
Measured 0.6 12.9 11.6 0.63 -3.8 720 

SCRZ 
- 
MLNG Improvement -0.03 -1.7 -0.8    

Ideal 0.44 28.5 11.2 0.28 -5.5 409 
Measured 0.79 11.8 11.4 0.98 3.1 778 

SCRZ 
- 
NPGS Improvement 0.35 16.7 -0.2    

Ideal 0.66 17.3 14.8 0.69 9.7 696 
Measured 0.83 10.6 9.9 0.8 3.61 791 

SCRZ 
- 
PPIN Improvement 0.17 6.7 4.9    

Ideal 0.57 13.3 10.8 0.56 3.8 503 
Measured 0.71 9.8 8.5 0.66 1.1 790 

MLNG 
- 
PPIN Improvement 0.14 3.5 2.3    

 
Table 3. Summary of Statistical Improvement from Ideal to Measured Pattern Data 

for HF Radar vs. HF Radar Baseline Radial Current Speed Pairs   
 

Also, the results of this comparison shows that for the angle looking toward the 

opposite site, the statistical values of the measured patterns yielded rms differences of 9.3 

to 12.9 cm/s and correlation coefficients in the range 0.60 – 0.85. But 0˚ to 15˚ angular 

shifts for radial currents still exist with the use of measured antenna patterns as shown in 

Table 4. 
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Baseline 
Corr. 
Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) # of obs 

Angle of 
R/D site 

Angle 
Shift 

0.6 12.9 10.9 720 -35˚  
SCRZ side 0.71 10.1 8.2 679 -25˚ 10˚ 

0.6 12.9 11.8 720 145˚  
SCRZ 
- 
MLNG MLNG side 0.72 11.1 10.0 812 160˚ 15˚ 

0.79 11.8 9.2 778 -65˚  
SCRZ side 0.86 10.1 9.3 781 -70˚ 5˚ 

0.79 11.8 12.7 778 115˚  

SCRZ 
- 
NPGS 
 NPGS side 0.79 10.0 9.3 782 110˚ 5˚ 

SCRZ side 0.83 10.6 9.9 791 -70˚ 0˚ 
0.83 10.6 10.3 791 106˚  

SCRZ 
- 
PPIN PPIN side 0.85 10.1 9.6 984 111˚ 5˚ 

0.71 9.8 9.2 790 235˚  
MLNG side 0.74 9.3 8.8 832 230˚ 5˚ 

MLNG 
-  
PPIN PPIN side 0.71 9.8 9.9 790 56˚ 0˚ 

 
Table 4. Summary of Comparison Statistics for HF Radar vs. HF Radar Baseline 

Radial Current Speed Pairs   
 

There is no angular shift at the SCRZ radar site of the SCRZ – PPIN pair and at 

the PPIN radar site of the MLNG – PPIN pair with a correlation coefficient of 0.83 and 

0.71, respectively. But for the comparison of the other sites, the angular shifts are 

between 5o to 15˚.  

In the comparison of the SCRZ – MLNG, SCRZ – NPGS, and SCRZ – PPIN 

baseline pairs, the angular shift of the SCRZ radar site is 10˚ to the MLNG radar site, 5˚ 

to the NPGS radar site, and a 0o angular shift to the PPIN radar site. In the comparison of 

SCRZ – MLNG and MLNG – PPIN baseline pairs, the angular shift of the MLNG radar 

site is 15˚ to the SCRZ radar site and 5˚ to the PPIN radar site. There is no angular shift 

of the PPIN radar site to the SCRZ and MLNG radar sites. This angular shift of 0o to 15o 

in the baseline comparisons of the measured patterns is similar to the measured angular 

shift of the M1 buoy at 5-15o.  However, the angular shift of one radar site to another site 

is not constant.  For example, there is no angular shift measured from SCRZ to PPIN, but 

there is a 5o angular shift from SCRZ to NPGS, and a 10o shift from SCRZ to MLNG.   
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C. COMPARISON WITH DRIFTERS 
Through use of the radial surface currents from the drifters it may be possible to 

see the statistical variations of the observed-to-radar comparisons as a function of angle 

from individual radar sites. Also, the performance change moving from the ideal to 

measured antenna patterns can be seen through these comparisons. 

Radial surface current data from ideal and measured patterns from each radar site 

were compared with data from sixteen drifters deployed from 11 August to 5 September 

2003. To create the paired data set, radial currents were selected from the HF radar grid 

point closest to the drifters’ location at each drifter observation time. Individual pairs 

with more than two km distance between the radar and drifter data or more than 3˚ 

angular difference between two data points were removed to reduce spatial error. To 

compare radials from HF radar with current measurements from the drifters, the radial 

components of the drifter-derived velocities were computed in the direction of the various 

HF radar sites.  After that, the same methods used to calculate the statistical comparisons 

with data from the M1 buoy radial velocities were applied to the paired HF radar-drifter 

radial current data.  Both ideal and measured pattern data were compared over all 

locations. One important distinction in the computations involving the drifter-derived 

radial currents is that the radar-to-drifter comparison data were binned by angle as shown 

below since the drifter data covered a large range of angles unlike the case for the fixed 

location of the M1 buoy or the finite number of available baseline comparisons.  

1. Drifter vs. SCRZ HF RADAR  
The individual drifter positions, HF radar radial grid points, and the angles seen 

from the SCRZ site are illustrated in Figure 32. In total, 931 observations were used for 

the comparison. In addition, angles between -28˚ and -83˚ from east contained enough 

radial current pairs to investigate the statistical variation with angle and to assess the 

impact of using measured versus ideal antenna patterns. 

Figure 33 shows the rms difference and correlation coefficients between radar-

derived and drifter-derived radial currents as a function of angle.  Results are shown for 

data produced using both ideal and measured antenna patterns.  As shown below, there is 

some improvement obtained in the total radar-to-drifter comparison by using measured 

antenna patterns. However, the effect is not constant over the angles observed.  There is 
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no significant or negative effect of measured patterns at angles from -38˚ to -28˚. The 

particular angle pointing toward the MLNG radar site shows a small negative 

improvement. This result is also supported by the SCRZ – MLNG baseline comparison, 

which showed negative improvement for this case.   

In the angle range between –63o to –88o, which include the angles to the M1 

buoy, the PPIN radar site, and the NPGS radar site, there is significant improvement in 

the rms difference when measured antenna patterns are used.  The correlation coefficients 

results in this angle range are variable.  These results are consistent with the M1 buoy 

comparisons and the SCRZ – NPGS and the SCRZ – PPIN baseline comparisons. 

The scatter plots of the HF radar ideal and measured radial data versus drifter 

radial data from the SCRZ radar site are graphed in Figure 34. The ideal data gives a 

slope of 0.48 and an intercept of 0.16 (931 observations).  The measured data gives a 

slope of 0.64 and an intercept of 0.81.  A comparison of the slopes of the ideal and the 

measured data shows that the measured data is more accurate than the ideal data with an 

improvement of 4.2 cm/s rms difference and a 0.09 correlation coefficient. 

2. Drifter vs. MLNG HF RADAR  
The individual drifter positions, HF radar radial grid points, and the angles seen 

from the MLNG site are illustrated in Figure 35.  In total, 987 observations were used for 

the comparison. In addition, angles between 130˚ and 245˚ from east contained enough 

radial current pairs to investigate the statistical variation with angle. 

Figure 36 shows the rms difference and correlation coefficients between radar-

derived and drifter-derived radial currents as a function of angle.  Positive improvement 

for the data produced using measured antenna patterns is shown only at some angles from 

180˚ to 195˚. The angle toward the SCRZ radar site, 147o, shows a negative improvement 

in terms of both the rms difference and the correlation coefficient. This result is also 

supported by the SCRZ – MLNG baseline comparison, which showed a small negative 

improvement when measured patterns were used.  The angle toward the PPIN radar site, 

235o, shows a positive improvement in the rms difference with no change in the 

correlation coefficient.  
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The scatter plots of the HF radar ideal and measured radial data versus drifter 

radial data from the MLNG radar site are graphed in Figure 37. The ideal data gives a 

slope of 0.71 and an intercept of 0.39 (987 observations).  The measured data gives a 

slope of 0.7 and an intercept of 0.5.  A comparison of the scatter plots show that the 

measured data is less accurate than the ideal data with small negative improvements of –

0.04 cm/s rms difference and a -0.02 correlation coefficient. 

3. Drifter vs. NPGS HF RADAR  
The individual drifter positions, HF radar radial grid points, and the angles seen 

from the NPGS site are illustrated in Figure 38.  In total, 547 observations were used for 

the comparison. In addition, angles between 91˚ and 141˚ from east contained enough 

radial current pairs to investigate the statistical variation with angle. 

Figure 39 illustrates the change of the rms difference and the correlation 

coefficient as a function of angle.  Positive improvement for the data produced using 

measured antenna patterns is shown for all angles.  This is the expected result of the 

direction-finding process using measured antenna patterns and the MUSIC algorithm. 

The scatter plots of the HF radar ideal and measured radial data versus drifter 

radial data from the NPGS radar site are graphed in Figure 40. The ideal data gives a 

slope of 0.56 and an intercept of –9.03 (547 observations).  The measured data gives a 

slope of 0.67 and an intercept of –1.97.  A comparison of the scatter plots show that the 

measured data is more accurate than the ideal data with the significant improvements of 

7.0 cm/s rms difference and a 0.29 correlation coefficient. 

4. Drifter vs. PPIN HF RADAR  
The individual drifter position, HF radar radial grid points and the angles seen 

from the PPIN site are illustrated in Figure 41.  In total, 610 observations were used for 

the comparison.  In addition, angles between 61˚ and 116˚ from east contained enough 

radial current pairs to investigate the statistical variation with angle. 

Figure 42 illustrates the change of the rms difference and the correlation 

coefficient as a function of angle.  Positive improvement for the data produced using 

measured antenna patterns is shown for nearly all the angles with small differences 

between the results for ideal data and measured data. This result suggests that the 
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measured pattern of the PPIN radar site is not distorted as much as, for example, the 

NPGS radar site. Thus the change of statistical values is relatively lower than the NPGS 

site. 

The scatter plots of the HF radar ideal and measured radial data versus the drifter 

radial data from the PPIN radar site are graphed in Figure 43. The ideal data gives a slope 

of 0.72 and an intercept of 1.35 (610 observations).  The measured data gives a slope of 

0.8 and an intercept of 0.15.  A comparison of the scatter plots show that the measured 

data is more accurate than the ideal data with the relatively small improvements of 1.4 

cm/s rms difference and a 0.03 correlation coefficient. 

5. Summary from Drifter Comparison 
The drifter measurement depths were, approximately, eight meters while the HF 

radar measurement depth is from the surface to, approximately, one meter.  In keeping 

with the differences of the measurement depths, the statistical data show relatively better 

comparisons than with the M1 buoy and lower values when compared to the baseline 

data. 

According to the HF radar – drifter comparisons, data computed using the 

measured antenna patterns exhibit improved statistical values compared with data 

computed using the ideal antenna patterns in all cases, except at the MLNG radar site, as 

shown in Table 5. Summary comparisons of the PPIN data show a very small 

improvement from the ideal data to the measured data.  The NPGS rms differences and 

the correlation coefficients show a large improvement from the ideal data to the measured 

data suggesting that highly distorted antenna patterns at the NPGS radar site have been 

significantly compensated for through the use of measured antenna patterns. 
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R/D site 
Corr. 
coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

Ideal 0.65 16.9 18. 7 0.48 0.16 
Measured 0.74 12.7 13.1 0.64 0.81 931 

SCRZ 

Improvement 0.09 4.2 5.6    
Ideal 0.74 9.66 9.3 0.71 0.39 
Measured 0.72 10.0 9.6 0.7 0.5 987 

 MLNG 

Improvement -0.02 -0.04 -0.3    
Ideal 0.48 17.4 20.0 0.56 -9.03 
Measured 0.79 10.4 11.0 0.67 -1.97 547 

 NPGS 

Improvement 0.29 7.0 9.0    
Ideal 0.74 11.8 12.0 0.72 1.35 
Measured 0.77 10.4 9.7 0.8 0.15 610 

PPIN 

Improvement 0.03 1.4 2.3   
 

Table 5. Summary of Comparison Statistics for HF Radar vs. Drifter Radial Current 
Speed Pairs  

 

From the NPGS radar site at angles of 91o-141o, the correlation coefficients and 

the rms differences maintain high values, which are not scattered. Except for the 126o 

angle, all other angles show a marked improvement from the ideal to measured patterns.  

From the PPIN radar site, the correlation coefficients and the rms differences maintain 

high values, which are also not scattered.  Also, there is statistical improvement in the 

ideal to measured patterns. However, the PPIN improvement is smaller than the NPGS 

improvement. 

The SCRZ and MLNG drifter comparisons show some marked improvement 

through some angle ranges while other angle ranges did not improve or showed negative 

improvement.  There is an angular shift in the M1 buoy comparison and baseline 

comparison in the angle ranges that show negative improvement compared with the 

drifter observations.  At the MLNG radar site the total angular range is from 130o to 245o, 

but improvements in the rms differences and correlation coefficients can only be seen for 

angles 165o to 195o.  As a result, the composite statistical comparisons using the 

measured pattern are worse than those for the ideal pattern for the MLNG radar site. 
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IV. DISCUSSION 

A. POINTING ERRORS IN THE MUSIC ALGORITHM 
Through various comparisons in this study, it was shown that the use of measured 

antenna patterns provides better direction finding than using the ideal antenna patterns. 

Thus, it is recommended to use the measured antenna patterns for current mapping when 

using CODAR SeaSonde HF radar. However, pointing errors still exist when using the 

measured patterns and, in some cases, little improvement or slightly worse performance 

than the results using ideal antenna patters were observed. 

The CODAR SeaSonde systems use the MUSIC algorithm for direction finding, 

which requires accurate receive antenna patterns. Errors in the antenna patterns translate 

into pointing errors of the ocean current mapping.  There are two issues that may cause 

pointing errors in the field operations of the MUSIC algorithm that are discussed here: 1) 

Smoothing of measured antenna pattern and 2) Signal ratios of two loop antennae. 

1. Smoothing of Measured Antenna Pattern 
Actual antenna patterns measured by the transponder may not be good to use 

directly in the MUSIC algorithm for a heavily distorted pattern. Figure 44 shows the raw, 

measured antenna patterns (a) at MLNG radar site, 5o smoothed line (b), 10 o smoothed 

line (c), and 20 o smoothed line (d).  Given the limited number of degrees of freedom 

represented by the three SeaSonde receive antenna elements, the MUSIC algorithm 

cannot be expected to account for all of the small-scale variability in the observed 

antenna patterns.  Hence, some angular smoothing is requested but the optimal amount of 

smoothing is not known. 

Figure 45 shows the raw, measured antenna patterns at the SCRZ site (a), MLNG 

site (b), NPGS site (c), and PPIN site (d).  The noisiest antenna pattern is shown at the 

MLNG radar site broadcasting 24.6 MHz signals that is about twice the frequency of the 

others.  

2. Signal Ratio between Two Loop Antennae 
At the most basic level, the direction finding system uses the arctangent of signal 

ratio between the two crossed-loop antennas normalized by the monopole antenna. to 
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determine the direction of the target.  Figure 46 shows the ideal antenna pattern and its 

signal ratio.  It is quite clear how to determine the bearing with the signal ratio of the 

ideal pattern because there is only one point of bearing for a certain signal ratio.  If there 

is the same signal ratio of the receive antenna at two or more bearings due to the distorted 

antenna pattern, it is not simple to distinguish which is which, even though the distorted 

antenna pattern was taken into account in the algorithm.  In the case of the more 

sophisticated MUSIC algorithm, which applies a statistical, eigenfunction approach to the 

direction finding, it is possible to tolerate some additional ambiguity in the signal ratios, 

but the multi-valued nature of the observed signal ratios still provides a good indication 

of when to expect increased numbers of pointing errors. Figures 47 to 50 illustrate the 

measured antenna patterns and signal ratios of the four radar sites in Monterey Bay.  

These figures show that the same signal ratio of the receive antenna could be found at 

several angles except for the NPGS measured antenna pattern.   

B. SUMMARY 
High-Frequency (HF) radars have been developed mainly to measure surface 

currents since the first identification of the Doppler spectrum of sea echo by Crombie 

(1955). There are two types of HF radar systems in use, which differ mainly in the 

direction finding: a beam forming system used in OSCR and WERA, and a direction 

finding system used in the CODAR SeaSonde.  

The CODAR SeaSonde using the MUSIC algorithm for direction finding can use 

either ideal or measured antenna patterns. The measured patterns of the receive antenna 

can be measured by small battery-operated transponders and the system accuracy of 

CODAR SeaSonde is dependent on the distortion of the measured pattern. 

In this study, the performance of a network of four CODAR (Coastal Ocean 

Dynamics Application Radar) SeaSonde HF radars deployed around Monterey Bay, CA, 

was described for the period between July to September 2003. Comparisons were made 

in Monterey Bay with moored velocity observations, with four radar baseline pairs, and 

with velocity observations from sixteen drifter deployments. Statistical values, such as 

the correlation coefficient, rms difference, residual rms difference, slope, and intercept, 

were used for this study. 
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All systems measured ocean surface current and all vector currents are translated 

into radial current components in the direction of the various radar sites. Measurement 

depths were ~1 m deep for the HF radar-derived currents, 12 to 20 m for the ADCP bin 

nearest to the surface at the M1 mooring site, and ~8 m for the drifter-derived velocity 

estimates. In relation to the difference of the measured depths, general statistical data 

comparisons showed relatively high correlations using the baseline data and lower 

correlations with the M1 buoy data. 

First, the HF radar – M1 buoy comparisons of radial current components yielded 

improvements of  -0.2 to 2.9 cm/s rms differences and 0.04 to 0.32 correlation 

coefficients between radar data using ideal and measured antenna patterns. In the 

measured pattern case, the maximum value of the correlation coefficient, 0.62, was found 

at the SCRZ and the PPIN radar site and the minimum value of the correlation 

coefficient, 0.34, was found at the MLNG radar site. The PPIN data showed a very small 

improvement from the ideal to the measured data, but the NPGS correlation coefficient 

showed a large improvement from the ideal to the measured data. Also, these 

comparisons indicated angular shifts of 10˚ to 30˚ for radial currents produced using ideal 

antenna patterns.  Angular shifts of 5˚ to 15˚ for radial currents still existed even though 

the local antenna pattern distortion was taken into account by using measured antenna 

patterns. 

Second, the baseline comparisons of radial current components yield 

improvements of -1.7 to 16.7 cm/s rms differences and -0.03 to 0.35 correlation 

coefficients between radar data using ideal and measured antenna patterns. In the 

measured pattern, the maximum value of the correlation coefficient, 0.83, was found at 

the SCRZ - PPIN baseline and the minimum value of the correlation coefficient, 0.60, 

was found at the SCRZ - MLNG baseline. The SCRZ – NPGS baseline data showed a 

large improvement in statistical values from the ideal to the measured data, but a small 

negative improvement was seen at the SCRZ – MLNG baseline. Also, these comparisons 

indicated angular shifts of 0˚ to 15˚ for radial currents produced using measured antenna 

patterns, similar to the measured angular shift based on comparisons with the M1 buoy of 

5-15o.  Particularly, the angular shift of one radar site to another sites was not constant. 

For instance, there was no angular shift measured from SCRZ to PPIN, but there was a 5o 
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angular shift from SCRZ to NPGS, and a 10o shift from SCRZ to MLNG.  Furthermore, 

the HF radar system accuracies were evaluated through these baseline analyses using the 

same HF radar system.  

Lastly, comparisons of radial current components with drifters yielded 

improvements of -0.04 to 7.00 cm/s rms differences and -0.02 to 0.29 correlation 

coefficients between radar data using ideal and measured antenna patterns. The PPIN 

data showed a very small improvement, the NPGS data a large improvement, and the 

MLNG data a small worsening from the ideal to the measured pattern. In the measured 

pattern, the maximum value of the correlation coefficient, 0.79, was found at the NPGS 

radar site and the minimum value of the correlation coefficient, 0.72, was found at the 

MLNG radar site. 

Due to the scattered distribution of the sixteen drifters across Monterey Bay, it 

was possible to see the statistical values and their variation at several angles from one 

radar site.  The drifter comparisons at the SCRZ and the MLNG radar site showed some 

marked improvement through some angle ranges while other angle ranges did not or 

showed negative improvement.  In particular the angle of –33o (147o) toward the MLNG 

(SCRZ) radar site from the SCRZ (MLNG) radar site showed negative improvement of 

statistical values, which was already shown in the SCRZ – MLNG baseline comparison.  

At the MLNG radar site, the smaller distribution of drifters within the positive 

improvement angular range was less than the negative improvement range, resulting in 

overall statistical correlations of the measured pattern, which were slightly worse than the 

ideal pattern values. The correlation coefficients and the rms differences of the NPGS and 

the PPIN radar site maintained positive improvements and high values within most of the 

angular range. However, the PPIN improvement was small while the NPGS improvement 

was significant.  Through the comparisons of the drifters with the HF radar data, it is 

clear that the pointing errors vary with angle.  The drifter comparisons, in particular, 

provided an important, new look at the performance of the MUSIC algorithm with 

respect to the three-element receive antenna configuration of the SeaSonde.  It is highly 

recommended that additional drifter experiments, particularly with shallower, 1-m 

instruments, be conducted to better elucidate the relationship of pointing errors as a 

function of angle and the observed angular antenna patterns. 
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Finally, it is highly recommended that simulation experiments be conducted in 

which known current patterns and known antenna distortions are used with the MUSIC 

algorithm in order to develop spatial error models based on the shape of the observed 

antenna patterns.  Furthermore, it is possible that some coastal locations are not 

acceptable SeaSonde HF radar sites due to the level and nature of the antenna pattern 

distortions at the site.  Follow-on studies to this one with drifters and with simulation 

experiments should aim to describe these “unacceptable” antenna pattern distortions as a 

guide to further expansion of coastal ocean monitoring networks using HF radar 

instruments. 
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Figure 1.   An Example of the Radial Current Vectors for the SCRZ Radar Site based on the 

Ideal (Black) and Measured (Red) Antenna Patterns. 

 
Figure 2.   An Example of the Radial Current Vectors for the MLNG Radar Site based on the 

Ideal (Black) and Measured (Red) Antenna Patterns. 
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Figure 3.   An Example of the Radial Current Vectors for the NPGS Radar Site based on the 

Ideal (Black) and Measured (Red) Antenna Patterns. 
 

 
Figure 4.   An Example of the Radial Current Vectors for the PPIN Radar Site based on the 

Ideal (Black) and Measured (Red) Antenna Patterns. 
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Figure 5.   Locations of the Four HF Radar Sites, M1 Buoy and Drifters. 

 

 
Figure 6.   Drifter with Its Drogue Shortly After Deployment. 
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Figure 7.   M1 Buoy and SCRZ Radial Grid Points. –78o indicates the Closest Grid Point of 

Ideal Data to the M1 Buoy and –80o the Closest Grid Point of Measured Data to 
the Buoy. 
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Figure 8.    Correlation Coefficient and rms Difference Plots of M1 Buoy Radial Data vs. 

SCRZ Ideal (upper panel) and Measured Data (lower panel). 
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Figure 9.   Scatter Plot of M1 Buoy Radial Data vs. SCRZ HF Radial Data.  Ideal Data (left 

panel) yield Slope of 0.7 and y Intercept of 9.52. Measured Data (right panel) 
yield Slope of 0.93 and y Intercept of 7.96, respectively. 
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Figure 10.   M1 Buoy and MLNG Radial Grid Points. 
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Figure 11.   Correlation Coefficient and rms Difference Plots of M1 Buoy Radial Data vs. 

MLNG Ideal (upper panel) and Measured data (lower panel).  
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Figure 12.   Scatter Plot of M1 Buoy Radial Data vs. MLNG HF Radial Data.  Ideal Data (left 

panel) yield Slope of 0.21 and y Intercept of –4.41. Measured Data (right panel) 
yield Slope of 0.45 and y Intercept of –1.43, respectively. 
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Figure 13.   M1 Buoy and NPGS Radial Grid Points. 
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Figure 14.   Correlation Coefficient and rms Difference Plots of M1 Buoy Radial Data vs. 

NPGS Ideal (upper panel) and Measured Data (lower panel).     
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Figure 15.   Scatter Plot of M1 Buoy Radial Data vs. NPGS HF Radial Data.  Ideal Data (left 

panel) yield Slope of 0.28 and y Intercept of 0.48.  Measured Data (right panel) 
yield Slope of 0.94 and y Intercept of –6.24, respectively. 
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Figure 16.   M1 Buoy and PPIN Radial Grid Points. 
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Figure 17.   Wide Circle of M1 Buoy Grid Points and Its Neighboring PPIN Radial Grid 

Points. Blue Circle in the Red Indicates the Mean Position of the M1 Buoy. 
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Figure 18.   Correlation Coefficient and rms Difference Plots of M1 Buoy Radial Data vs. 

PPIN Ideal (upper panel) and Measured Data (lower panel).    
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Figure 19.   Scatter Plot of M1 Buoy Radial Data vs. PPIN HF Radial Data.  Ideal Data (left 

panel) yield Slope of 0.91 and y Intercept of –6.71.  Measured Data (right panel) 
yield Slope of 0.95 and y Intercept of 6.47, respectively. 
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Figure 20.   SCRZ – MLNG Baseline and Grid Points of Measured Radial Data.  
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Figure 21.   Correlation Coefficient and rms Difference Plots of MLNG vs. SCRZ HF 

Measured Radial Data.  MLNG HF Measured Radial Data at Several Angles vs. 
SCRZ HF Measured Radial Data at –35˚ (upper panel) and SCRZ HF Measured 

Radial Data at Several Angles vs. MLNG at 145˚ (lower panel). 
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Figure 22.   Scatter Plot of MLNG vs. SCRZ HF Radial Data.  Ideal Data (left panel) yield 

Slope of 0.75 and y Intercept of –1.3. Measured Data (right panel) yield Slope of 
0.63 and y Intercept of –3.8, respectively. 
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Figure 23.   SCRZ – NPGS Baseline and Grid Points of Measured Radial Data. 
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Figure 24.   Correlation Coefficient and rms Difference Plots of NPGS vs. SCRZ HF 

Measured Radial Data.  NPGS HF Measured Radial Data at Several Angles vs. 
SCRZ HF Measured Radial Data at -65˚ (upper panel) and SCRZ HF Measured 

Radial Data at Several Angles vs. NPGS at 115˚ (lower panel).     
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Figure 25.   Scatter Plot of NPGS vs. SCRZ HF Radial Data.  Ideal Data (left panel) yield 

Slope of 0.28 and y Intercept of –5.5.  Measured Data (right panel) yield Slope of 
0.98 and y Intercept of 3.1, respectively. 
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Figure 26.   SCRZ – PPIN Baseline and Grid Points of Measured Radial Data.  
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Figure 27.   Correlation Coefficient and rms Difference Plots of PPIN vs. SCRZ HF Measured 

Radial Data.  PPIN HF Measured Radial Data at Several Angles vs. SCRZ HF 
Measured Radial Data at -70˚ (upper panel) and SCRZ HF Measured Radial Data 

at Several Angles vs. PPIN at 111˚ (lower panel).      
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Figure 28.   Scatter Plot of PPIN vs. SCRZ HF Radial Data.  Ideal Data (left panel) yield 

Slope of 0.69 and y Intercept of 9.7. Measured Data (right panel) yield Slope of 
0.98 and y Intercept of 3.61, respectively. 
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Figure 29.   MLNG – PPIN Baseline and Grid Points of Measured Radial Data.  
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Figure 30.   Correlation Coefficient and rms Difference Plots of PPIN vs. MLNG HF 

Measured Radial Data.  PPIN HF Measured Radial Data at Several Angles vs. 
MLNG HF Measured Radial Data at 235˚ (upper panel) and MLNG HF Measured 

Radial Data at Several Angles vs. PPIN at 56˚ (lower panel).    
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Figure 31.   Scatter Plot of PPIN vs. MLNG HF Radial Data.  Ideal Data (left panel) yield 

Slope of 0.56 and y Intercept of 3.8.  Measured Data (right panel) yield Slope of 
0.66 and y Intercept of 1.1, respectively. 
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Figure 32.   Grid Points of SCRZ HF Measured Radial Data (blue star) and Drifter Position 

(red dot). Blue Lines Indicate Grid Points of HF Data in the Same Angle from the 
Radar Site. 
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Figure 33.   Correlation Coefficient and rms Difference Plot of Drifter Radial Data vs. SCRZ 

HF Radial Data (upper panel, ideal: thin line, measured: thick line).  Number of 
Observations at Each Angle is shown at the Lower Panel.  
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Figure 34.   Scatter Plot of Drifter Radial Data vs. SCRZ HF Radial Data.  Ideal Data (left 

panel) yield Slope of 0.48 and y Intercept of 0.16. Measured Data (right panel) 
yield Slope of 0.64 and y Intercept of 0.81, respectively. 
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Figure 35.   Grid Points of MLNG HF Measured Radial Data (blue star) and Drifter Position 

(red dot). Blue Lines Indicate Grid Points of HF Data in the Same Angle from the 
Radar Site.   
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Figure 36.   Correlation Coefficient and rms Difference Plot of Drifter Radial Data vs. MLNG 

HF Radial Data (upper panel, ideal: thin line, measured: thick line).  Number of 
Observations at Each Angle is shown at the Lower Panel.  
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Figure 37.   Scatter Plot of Drifter Radial Data vs. MLNG HF Radial Data.  Ideal Data (left 

panel) yield Slope of 0.71 and y Intercept of 0.39. Measured Data (right panel) 
yield Slope of 0.7 and y Intercept of 0.5, respectively. 
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Figure 38.   Grid Points of NPGS HF Measured Radial Data (blue star) and Drifter Position 

(red dot). Blue Lines Indicate Grid Points of HF Data in the Same Angle from the 
Radar Site.  
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Figure 39.   Correlation Coefficient and rms Difference Plot of Drifter Radial Data vs. NPGS 

HF Radial Data (upper panel, ideal: thin line, measured: thick line).  Number of 
Observations at Each Angle is shown at the Lower Panel.  
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Figure 40.   Scatter Plot of Drifter Radial Data vs. NPGS HF Radial Data.  Ideal Data (left 

panel) yield Slope of 0.56 and y Intercept of –1.97. Measured Data (right panel) 
yield Slope of 0.67 and y Intercept of 0.81, respectively. 
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Figure 41.   Grid Points of PPIN HF Measured Radial Data (blue star) and Drifter Position 

(red dot). Blue Lines Indicate Grid Points of HF Data in the Same Angle from the 
Radar Site.   
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Figure 42.   Correlation Coefficient and rms Difference Plot of Drifter Radial Data vs. PPIN 

HF Radial Data (upper panel, ideal: thin line, measured: thick line).  Number of 
Observations at Each Angle is shown at the Lower Panel.  
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Figure 43.   Scatter Plot of Drifter Radial Data vs. PPIN HF Radial Data.  Ideal Data (left 

panel) yield Slope of 0.72 and y Intercept of 1.35. Measured Data (right panel) 
yield Slope of 0.8 and y Intercept of 0.15, respectively. 

 
 

 
 

Figure 44.   Measured Antenna Patterns of MLNG Radar Site. Left-upper Panel (a) is Raw 
Measured Antenna Pattern, Right-upper Panel (b) is 5o Smoothed, Left-lower 

Panel (c) is 10o Smoothed, and Right-lower Panel (d) is 20o Smoothed. 
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Figure 45.   Raw Measured Antenna Patterns of Each Radar Site. Left-upper Panel (a) is the 
Measured Antenna Pattern at SCRZ Radar Site, Right-upper Panel (b) is MLNG, 

Left-lower Panel (c) is NPGS, and Right-lower Panel (d) is PPIN. 
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Figure 46.   Ideal Antenna Pattern and Its Signal Ratio 
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Figure 47.   Measured Antenna Pattern and Its Signal Ratio at SCRZ Radar Site 
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Figure 48.   Measured Antenna Pattern and Its Signal Ratio at MLNG Radar Site 
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Figure 49.   Measured Antenna Pattern and Its Signal Ratio at NPGS Radar Site 
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Figure 50.   Measured Antenna Pattern and Its Signal Ratio at PPIN Radar Site 
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APPENDIX: TABLES 

Angles of 
SCRZ Corr. Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

-38˚ -0.13 23.3 14.8 -0.13  0.34 648 
-43˚ -0.09 22.1 14.0 -0.08  1.06 855 
-48˚  0.03 19.9 13.2  0.03  1.25 1034 
-53˚  0.17 17.6 12.4  0.15  2.17 1113 
-58˚  0.42 15.2 12.9  0.43  5.05 1122 
-63˚  0.58 16.4 14.8  0.74  8.05 1125 
-68˚  0.62 18.4 15.7  0.88 10.24 1126 
-73˚  0.57 18.7 16.0  0.8 10.67 1116 
-78˚  0.5 18.9 16.9  0.7  9.52 1073 
-83˚  0.41 18. 9 17.2  0.56  7.73 1023 
-88˚  0.31 19.2 17.3  0.41  6.29 874 
-93˚  0.21 20.0 17.1  0.26  5.92 798 
-98˚  0.1 21.6 18.1  0.14  5.16 672 
-103˚  0.0 22.5 18.0 -0.01  5.09 645 
-108˚ -0.09 24.2 18.8 -0.13  4.09 547 
-113˚ -0.16 25.4 18. 9 -0.23  4.6 539 
-118˚ -0.25 27.2 19.5 -0.36  3.73 475 
-123˚ -0.27 26.7 18.2 -0.37  3.77 483 
-128˚ -0.34 28.3 18.7 -0.49  1.94 438 

Table A-1. Comparison Statistics for SCRZ HF Radar (Ideal Pattern) vs. M1 
Mooring Radial Current Speed Pairs.  

 
Angles of 
SCRZ 

Corr.  
Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

-40˚ -0.12 24.8 16.1 -0.13  1.5 550 
-45˚ -0.13 24.2 15.9 -0.15  2.18 416 
-50˚ -0.04 21.0 14.7 -0.05  2.65 606 
-55˚  0.04 20.3 14.6  0.05  2.8 681 
-60˚  0.14 19.0 13.8  0.13  1.82 999 
-65˚  0.3 16.9 13.7  0.31  3.74 1111 
-70˚  0.51 15.5 14.2  0.6  5.28 1124 
-75˚  0.59 17.0 15. 7  0.82  7.23 1091 
-80˚  0.62 18.1 16.5  0.93  7.96 942 
-85˚  0.64 19.5 17.2  1.03  8.91 850 
-90˚  0.65 20.6 17. 6  1.05 10.4 968 
-95˚  0.6 19.5 17.1  0.92  9.82 1098 
-100˚  0.53 18.4 16.7  0.74  8.67 1109 
-105˚  0.42 19.4 17.8  0.59  7.79 1101 
-110˚  0.33 20.8 19.1  0.48  6.98 1003 
-115˚  0.2 21.3 18. 5  0.26  6.94 1012 
-120˚  0.05 21.5 16.9  0.06  5.5 1061 
-125˚ -0.12 22.9 16.1 -0.14  4.72 1080 
-130˚ -0.17 24.4 17.0 -0.21  3.32 971 

Table A-2. Comparison Statistics for SCRZ HF Radar (Measured Pattern) vs. 
M1 Mooring Radial Current Speed Pairs.  



60 

Angles of 
MLNG Corr. Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

240˚  0.34 16.1 14.1  0.56  5.82 646 
235˚  0.38 16.2 14.3  0.63  6.08 743 
230˚  0.42 15.8 13.9  0.7  6.39 815 
225˚  0.43 15.2 14.1  0.74  4.64 853 
220˚  0.45 13.7 13.0  0.72  3.08 923 
215˚  0.49 12.8 12.3  0.76  2.18 957 
210˚  0.43 12.7 12.2  0.63 -0.5 1001 
205˚  0.29 14.1 13.0  0.43 -2.7 1035 
200˚  0.14 15.5 13. 4  0.21 -4.41 1041 
195˚  0.02 16.5 13.7  0.04 -4.78 1044 
190˚ -0.07 17.7 14.2 -0.11 -4.36 1052 
185˚ -0.09 17.7 14.2 -0.14 -3.52 1045 
180˚ -0.11 18.0 14.4 -0.18 -2.82 1039 
175˚ -0.09 18.1 14.7 -0.14 -2.13 1028 
170˚ -0.09 18.3 14.9 -0.14 -1.21 1030 
165˚ -0.07 18.2 14.8 -0.12 -0.18 1025 
160˚ -0.06 18.4 15.0 -0.09  0.87 1006 
155˚ -0.07 18.6 15.0 -0.12  1.56 974 
150˚ -0.04 17.7 14.0 -0.07  2.21 956 
145˚ -0.02 17.0 13.3 -0.03  2.53 924 
140˚ -0.01 15.9 11.9 -0.01  2.76 847 
135˚  0.0 15.5 11.5  0.0  2.7 815 
130˚  0.0 15.0 10.8  0.0  2.93 700 

Table A-3. Comparison Statistics for MLNG HF Radar (Ideal Pattern) vs. M1 
Mooring Radial Current Speed Pairs.  

 
 

Angles of 
MLNG Corr. Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

240˚  0.21 13.7 11.8  0.28  0.34 690 
235˚  0.3 14.6 13.0  0.45  3.26 871 
230˚  0.4 15.7 13.9  0.67  5.9 870 
225˚  0.42 15.6 13.9  0.71  6.02 912 
220˚  0.43 14.0 12.9  0.67  3.84 991 
215˚  0.43 13.0 12.3  0.64  0.89 991 
210˚  0.42 13.0 12.3  0.62 -0.8 965 
205˚  0.44 13.0 12.2  0.65 -0.74 860 
200˚  0.34 12.4 11.3  0.45 -1.43 973 
195˚  0.27 14.3 13.1  0.4 -2.88 975 
190˚  0.18 14.9 13.1  0.25 -3.37 1046 
185˚  0.04 16.1 13.5  0.06 -3.77 1061 
180˚ -0.12 18.1 14.3 -0.19 -3.68 1063 
175˚ -0.14 19.1 15.4 -0.23 -3.18 1058 
170˚ -0.13 19.6 16.0 -0.22 -2.18 1041 
165˚ -0.1 19.4 16.0 -0.17 -0.77 1036 
160˚ -0.05 18.5 15.3 -0.08  0.47 1030 
155˚ -0.04 17.3 13.7 -0.06  1.65 1024 
150˚ -0.02 15.8 11.7 -0.02  2.44 971 
145˚ -0.02 15.2 10.6 -0.02  3.1 851 
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140˚  0.06 14.1  9. 3  0.06  4.14 715 
135˚  0.1 13.6  9.1  0.11  3.62 679 
130˚  0.1 13.7  9.7  0.1  2.57 617 

Table A-4. Comparison Statistics for MLNG HF Radar (Measured Pattern) vs. 
M1 Mooring Radial Current Speed Pairs.  

 
Angles of 
NPGS Corr. Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

161˚  0.57 16.0 15.0  0.84 -6.59 808 
156˚  0.57 16.5 15.2  0.87 -7.54 845 
151˚  0.54 15.6 14.8  0.78 -5.99 847 
146˚  0.45 14.6 13.5  0.56 -3.1 836 
141˚  0.37 15.3 12.6  0.41 -0.64 815 
136˚  0.28 16.4 12.9  0.31 -0.3 753 
131˚  0.25 17.4 13.1  0.28  0.48 637 
126˚  0.2 18.4 12.9  0.22  1.48 540 
121˚  0.18 18.7 12.7  0.2  2.32 492 
116˚  0.15 19.9 13.0  0.16  1.58 411 
111˚  0.09 20. 9 13.0  0.1  1.47 355 
106˚  0.1 20.1 12.6  0.11  1.13 333 
101˚  0.01 21.3 12.7  0.01  1.24 320 
96˚  0.03 20.8 13.0  0.04  1.42 286 
91˚  0.0 21.4 12. 3  0.0  1.89 282 
86˚ -0.09 21.6 11.5 -0.08  1.23 231 
81˚ -0.13 23.2 12.4 -0.12  1.26 208 

Table A-5. Comparison Statistics for NPGS HF Radar (Ideal Pattern) vs. M1 
Mooring Radial Current Speed Pairs. 

 

Intercept Corr. Coef 
rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

145˚  0.49 15.1 14.2  0.62 -2.91 312 
140˚  0.53 14.9 14.5  0.74 -4.21 616 
135˚  0.59 15.8 14.7  0.88 -6.91 837 
130˚  0.57 17.6 16.6  0.94 -6.24 822 
125˚  0.57 19.3 17.7  1.0 -7.65 804 
120˚  0.5 17. 6 17.0  0.81 -5.8 830 
115˚  0.43 16.7 16.0  0.62 -3.98 751 
110˚  0.37 15.5 13.6  0.44 -2.37 786 
105˚  0.27 17.2 13.9  0.32 -0.31 682 
100˚  0.2 18.4 13.3  0.22  0.5 619 
95˚  0.15 18.0 12.6  0.16  0.03 699 
90˚  0.08 19.7 12.7  0.09  1.13 534 
85˚  0.04 21.3 12.7  0.04  2.21 413 
80˚ -0.05 21. 9 12.8  0.06  0.19 222 

Table A-6. Comparison Statistics for NPGS HF Radar (Measured Pattern) vs. 
M1 Mooring Radial Current Speed Pairs.   
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Angles of 
PPIN Corr. Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

176˚ -0.09 22.3 13.9 -0.09  1.51 1023 
171˚  0.08 19.2 13.0  0.08  0.35 1044 
166˚  0.25 16.7 12.7  0.25 -0.98 1055 
161˚  0.4 14.7 12.3  0.41 -2.34 1047 
156˚   0.49 14.4 13.1  0.55 -3.89 1037 
151˚  0.58 14.0 13.2  0.72 -5.13 1023 
146˚  0.62 14.7 13.8  0.84 -5.87 996 
141˚  0.63 15.8 14.4  0.9 -7.14 1018 
136˚  0.63 17.2 15.7  0.97 -7.23 997 
131˚  0.63 17.5 15.9  0.97 -7.45 971 
126˚  0.6 18.1 16.7  0.95 -7.4 924 
121˚  0.58 18.3 17.2  0.91 -6.71 884 
116˚  0.55 18.0 17.0  0.84 -6.69 827 
111˚  0.52 17.4 16.6  0.75 -5.7 804 
106˚  0.46 17.4 16.7  0.65 -4.49 726 
101˚  0.45 17.0 16.1  0.6 -3.95 729 
96˚  0.41 16.5 15.3  0.53 -2.6 667 
91˚  0.39 16.9 15.7  0.52 -2.15 669 
86˚  0.36 16.7 14.4  0.44 -1.15 629 
81˚  0.33 16.7 14.1  0.39 -1.53 628 
76˚  0.31 16.6 13.6  0.36 -0.9 622 
71˚  0.28 17.5 13.8  0.32 -0.31 597 

Table A-7. Comparison Statistics for PPIN HF Radar (Ideal Pattern) vs. M1 
Mooring Radial Current Speed Pairs. 

Angles of 
PPIN Corr. Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

176˚ -0.11 21.3 12.7 -0.11  1.07 1084 
171˚  0.03 19.6 13.1  0.04  0.14 1058 
166˚  0.17 18.0 13.4  0.18 -1.17 1000 
161˚  0.31 16.9 14.0  0.34 -2.7 807 
156˚  0.35 15.7 13.2  0.37 -3.75 849 
151˚  0.43 15.3 13.5  0.48 -3.09 513 
146˚  0.42 15.9 14.4  0.5 -3.86 701 
141˚  0.42 15.8 14.3  0.5 -4.64 855 
136˚  0.51 14.5 13.5  0.63 -4.63 1007 
131˚  0.6 15.0 13.9  0.81 -5.39 1038 
126˚  0.62 15.5 14.6  0.88 -5.75 1081 
121˚  0.62 16.6 15.5  0.95  6.47 1076 
116˚  0.57 17.0 16.0  0.84 -6.45 1072 
111˚  0.51 17.1 16.3  0.75 -5.57 1059 
106˚  0.48 17.5 16.8  0.7 -5.41 859 
101˚  0.4 16.5 15.3  0.51 -3.56 1044 
96˚  0.37 16.7 15.0  0.46 -2.34 830 
91˚  0.24 17.8 14.5  0.28 -1.81 816 
86˚  0.27 17.0 14.9  0.36 -3.1 471 
81˚  0.2 18.0 13.8  0.22 -1.16 827 
76˚  0.12 19.1 13.8  0.12 -2.22 647 
71˚  0.03 20.1 14.2  0.04 -2.24 604 
Table A-8. Comparison Statistics for PPIN HF Radar (Measured Pattern) vs. M1 

Mooring Radial Current Speed Pairs.  
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Angles of 
SCRZ Corr. Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

-120˚ -0.11 23.7 13.8 -0.11  5.82 904 
-115˚ -0.13 25.86 14.5 -0.13  8.42 886 
-110˚ -0.15 27.89 15.6 -0.17 10.09 871 
-105˚ -0.07 28.63 16.3 -0.08 12.41 926 
-100˚ -0.04 30.0 17.6 -0.05 14.01 933 
-95˚ -0.03 33.3 19.9 -0.05 16.74 911 
-90˚ -0.01 35. 3 22.4 -0.01 18.74 821 
-85˚  0.07 33.3 22.6  0.13 18.54 676 
-80˚  0.1 31.1 21.3  0.18 16.83 759 
-75˚  0.17 28.8 19.4  0.25 14.64 909 
-70˚  0.19 25.1 16.8  0.24 11.4 956 
-65˚  0.36 20.1 14.5  0.4  8.24 952 
-60˚  0.5 16.4 13.3  0.56  5.3 863 
-55˚  0.58 16.9 14.7  0.73  6.28 515 
-50˚  0.55 16.2 14.1  0.66  5.25 394 
-45˚  0.56 16.3 15.0  0.74  4.18 332 
-40˚  0.57 14.3 12.3  0.59  2.39 499 
-35˚  0.6 12.9 10.9  0.56  0.25 720 
-30˚  0.67 11.4  9.7  0.6 -0.89 687 
-25˚  0.71 10.1  8.2  0.59 -2.23 679 
-20˚  0.62 11.4  8.9  0.51 -3.22 631 
Table A-9. Comparison Statistics for SCRZ – MLNG HF Radar Baseline Radial 
Current Speed Pairs (Measured Pattern).   One Radial Bin of the Best Grid Point 

Pairing from MLNG vs. Several Radial Bins from SCRZ.   
Angles of 
MLNG Corr. Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

230˚  0.11 18.0 14.3  0. 1  1.37 720 
225˚  0.15 17.6 14.4  0.13  1.35 739 
220˚  0.21 16.9 14.8  0.18  2.98 795 
215˚  0.3 16.5 15.3  0.26  4.08 796 
210˚  0.31 17.1 16.2  0.27  5.43 776 
205˚  0.18 18.4 16. 5  0.16  5.78 705 
200˚  0.24 17.2 15.5  0.21  4.24 765 
195˚  0.3 17.1 15.7  0.28  4.73 758 
190˚  0.4 16.1 15.6  0.38  5.02 821 
185˚  0.52 14.0 13.9  0.49  3.57 822 
180˚  0.63 12.3 12.4  0.62  2.96 822 
175˚  0.67 11.9 11.6  0.69  2.28 810 
170˚  0.69 11.8 11.0  0.76  1.69 805 
165˚  0.7 11.6 10.7  0.79  1.21 807 
160˚  0.72 11.1 10.0  0.8  0.23 812 
155˚  0.7 11.1 10.0  0.75 -1.05 809 
150˚  0.67 11.6 10.7  0.69 -2.68 792 
145˚  0.6 12.9 11.8  0.64 -3.82 720 
140˚  0.52 14.1 12.9  0.54 -5.11 671 
135˚  0.45 14.8 13.4  0.46 -6.0 632 
130˚  0.42 15.2 14.1  0.41 -6.58 603 
125˚  0.39 14.6 12.8  0.39 -4.43 550 
Table A-10. Comparison Statistics for SCRZ – MLNG HF Radar Baseline Radial 
Current Speed Pairs (Measured Pattern).   One Radial Bin of the Best Grid Point 

Pairing from SCRZ vs. Several Radial Bins from MLNG.   
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Angles of 
SCRZ Corr. Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

-170˚ -0.41 37.8 15. 4 -0.37 -4.51 404 
-165˚ -0.3 38.3 14.9 -0.24 -7.18 423 
-160˚ -0.25 41.0 14.7 -0.2 -7.93 296 
-155˚ -0.19 32.1 15.5 -0.16 -2.7 471 
-150˚ -0.16 29.3 14.3 -0.12 -2.44 621 
-145˚ -0.07 27.8 14.1 -0.06 -2.52 654 
-140˚ -0.05 27.2 15.1 -0.04 -0.34 692 
-135˚ -0.04 27.1 16.5 -0.03  1.3 649 
-130˚  0.02 25.5 16.6  0.02  3.01 677 
-125˚  0.06 24.7 16.5  0.05  4.3 745 
-120˚  0.11 23.0 16.2  0.10  6.79 742 
-115˚  0.22 23.2 17.8  0.21  8.51 724 
-110˚  0.31 22.3 18.2  0.33  8.74 717 
-105˚  0.45 20.3 17.3  0.47  9.17 767 
-100˚  0.6 18.5 16.0  0.64  9.84 779 
-95˚  0.67 18.8 16.2  0.8 10.58 762 
-90˚  0.71 20.5 17.4  0.92 11.56 694 
-85˚  0.71 20.3 17.6  0.96 10.5 598 
-80˚  0.8 15.7 13.4  0.97  8.41 651 
-75˚  0.85 12.8 11.1  0.94  6.79 758 
-70˚  0.86 10.1  9.3  0.82  3.82 781 
-65˚  0.79 11.8  9.2  0.64  0.42 778 
-60˚  0.63 16.2 10.9  0.47 -1.62 705 
-55˚  0.56 18.5 12.2  0.41 -1.68 491 
-50˚  0.5 19.4 12.9  0.38 -2.6 391 
-45˚  0.47 21.0 13.7  0.38 -3.42 280 
-40˚  0.36 23.5 14.7  0.28 -3.1 383 
-35˚  0.33 23.1 12.7  0.23 -5.05 527 
-30˚  0.25 24.9 12.1  0.16 -6.09 473 

Table A-11. Comparison Statistics for SCRZ – NPGS HF Radar Baseline Radial 
Current Speed Pairs (Measured Pattern).   One Radial Bin of the Best Grid Point 

Pairing from NPGS vs. Several Radial Bins from SCRZ.    
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Angles of 
NPGS Corr. Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

75˚ -0.21 28.7 21. 2 -0.17  0.6 153 
80˚ -0.02 25.1 21.5 -0.02 -0.46 251 
85˚  0.19 22.0 21.6  0.15 -3.04 408 
90˚  0.31 17.1 16.8  0.23 -0.56 561 
95˚  0.59 13.3 14.0  0.49 -1.41 697 
100˚  0.68 12.7 14.0  0.63 -2.65 617 
105˚  0.76 10.7 11.3  0.75 -1.78 703 
110˚  0.79 10.0   9.3  0.82  1.4 782 
115˚  0.79 11.8 12.7  0.98  3.07 778 
120˚  0.76 15.6 21.5  1.05  7.42 823 
125˚  0.7 20.5 31.1  1.05 12.46 796 
130˚  0.66 19.9 27.6  0.93 12.4 819 
135˚  0.65 18.9 25.3  0.81 13.15 825 
140˚  0.47 19.4 20.2  0.59 11.36 605 

Table A-12. Comparison Statistics for SCRZ – NPGS HF Radar Baseline Radial 
Current Speed Pairs (Measured Pattern).   One Radial Bin of the Best Grid Point 

Pairing from SCRZ vs. Several Radial Bins from NPGS.    
 
Angles of 
SCRZ Corr. Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

-150˚ -0.18 29.4 14.6 -0.14 -2.21 675 
-145˚ -0.05 28.0 14.7 -0.04 -2.88 706 
-140˚  0.04 25.9 14.6  0.03 -2.2 729 
-135˚  0.11 24.9 15.4  0.1 -1.65 695 
-130˚  0.16 23.6 15.8  0.14  0.12 686 
-125˚  0.25 21.7 14.5  0.21  0.09 770 
-120˚  0.32 20.4 15.1  0.28  2.11 757 
-115˚  0.33 20.4 16.3  0.32  4.67 723 
-110˚  0.41 19.7 16.7  0.42  6.39 708 
-105˚  0.51 17.6 15.0  0. 5  6.83 773 
-100˚  0.63 16.4 14.3  0.64  8.02 782 
-95˚  0.68 17.5 15.3  0.78  9.61 771 
-90˚  0.71 19.2 16.9  0.91  9.98 664 
-85˚  0.7 19.5 17.2  0.94  9.64 585 
-80˚  0.76 15.6 13.7  0. 9  8.33 651 
-75˚  0.81 13.0 11.5  0.89  6.65 760 
-70˚  0.83 10.6   9.9  0.8  3.61 791 
-65˚  0.74 12. 6 10.3  0.62  1.13 790 
-60˚  0.58 16.6 11.6  0.46 -0.86 717 
-55˚  0.54 18.8 14.4  0.47 -0.45 461 
-50˚  0.4 20.4 15.2  0.37 -1.53 382 
-45˚  0.39 21.0 15.5  0.36 -1.93 302 
-40˚  0.36 22.7 15.1  0.31 -3.18 418 
-35˚  0.27 22.4 12.7  0.2 -3.82 606 
-30˚  0.19 25.0 12.5  0.13  5.61 530 

Table A-13. Comparison Statistics for SCRZ – PPIN HF Radar Baseline Radial 
Current Speed Pairs (Measured Pattern).   One Radial Bin of the Best Grid Point 

Pairing from PPIN vs. Several Radial Bins from SCRZ.    
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Angles of 
PPIN Corr. Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

181˚  0.08 31.3 28.2  0.08 -9.05 856 
176˚  0.25 23.6 23.3  0.20 -4.93 1056 
171˚  0.32 22.1 22.0  0.27 -3.52 1029 
166˚  0.41 20.0 20.0  0.37 -1.39 952 
161˚  0.49 19.04 18.7  0.45  0.11 726 
156˚  0.57 16.3 15.7  0.53  1.37 842 
151˚  0.55 16.8 15.4  0.52  3.8 556 
146˚  0.55 17.0 15.1  0.56  2.99 732 
141˚  0.53 16.8 14.8  0.52  5.17 816 
136˚  0.57 16.1 14.3  0.57  5.47 999 
131˚  0. 7 14.8 14. 6  0.77  6.52 1044 
126˚  0.76 14.1 14.9  0.89  5.63 1059 
121˚  0.79 13.4 15.0  0.95  5.09 1058 
116˚  0.82 11.5 11.8  0.94  3.25 1040 
111˚  0.85 10.1   9.6  0.9  1.46 984 
106˚  0.83 10.6 10.3  0.85  0.04 791 
101˚  0.77 12.3 14.5  0.66 -1.51 978 
96˚  0.68 14.7 17.5  0.54 -2.07 781 
91˚  0.58 17.7 20.8  0.42 -2.96 779 
86˚  0.55 18.6 21.8  0.41 -2.47 444 
81˚  0.48 18.9 21.3  0.34 -2.42 795 
76˚  0.37 22.1 24.2  0.27 -3.32 599 
71˚  0.24 24.5 24.9  0.18 -3.3 565 
66˚  0.16 25.0 24.0  0.12 -2.36 580 
61˚  0.07 26.2 23.5  0.04 -1.76 637 

Table A-14. Comparison Statistics for SCRZ – PPIN HF Radar Baseline Radial 
Current Speed Pairs (Measured Pattern).   One Radial Bin of the Best Grid Point 

Pairing from SCRZ vs. Several Radial Bins from PPIN.    
 

Angles of 
MLNG Corr. Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

245˚  0.23 15.7 13.9  0.32 -2.31 550 
240˚  0.54 12.0 11.2  0.66 -2.67 551 
235˚  0.71 9.8   9.2  0.77 -2.13 790 
230˚  0.74 9.3   8.8  0.78 -1.83 832 
225˚  0.66 10.5   9.6  0.7 -1.98 831 
220˚  0.59 11.3   9.9  0.59 -2.65 875 
215˚  0.48 12.9 10.9  0.5 -3.76 888 
210˚  0.39 14.4 12.1  0.43 -3.95 866 
205˚  0.44 13.7 11.8  0.48 -3.64 807 
200˚  0.36 14.3 12.0  0.39 -3.04 846 
195˚  0.31 16.0 13.7  0.38 -3.52 834 
190˚  0.3 16.0 13.7  0.36 -3.85 907 
185˚  0.22 16.9 14.1  0.27 -3.19 906 
180˚  0.14 17.7 14.5  0.18 -2.67 903 
175˚  0.07 18.9 15.3  0.09 -2.09 897 
170˚  0.03 20.1 16.4  0.04 -1.52 880 
165˚ -0.01 20.3 16.2 -0.02 -0.76 880 
160˚  0.0 20.4 16.4  0.0  0.6 885 
155˚  0.05 19.7 15.9  0.07  2.43 890 
150˚  0.1 19.1 15.2  0.12  4.12 886 
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145˚  0.15 19.4 15.4  0.2  6.29 841 
140˚  0.2 19.5 15.0  0.26  8.15 799 
135˚  0.2 19.6 15.2  0.25  8.1 782 
130˚  0.2 19.9 15.6  0.26  8.0 753 
125˚  0.18 19.5 15.6  0.23  6.4 675 
120˚  0.18 18.8 15.3  0.24  5.06 474 
Table A-15. Comparison Statistics for MLNG – PPIN HF Radar Baseline Radial 
Current Speed Pairs (Measured Pattern).   One Radial Bin of the Best Grid Point 

Pairing from PPIN vs. Several Radial Bins from MLNG.    
 

Angles of 
PPIN Corr. Coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

146˚ -0.18 25.4 16.1 -0.21  8.27 607 
141˚ -0.15 25.0 16.2 -0.18  8.82 748 
136˚ -0.12 25.0 16.8 -0.15  9.25 872 
131˚ -0.15 27.4 17.4 -0.21 11.3 891 
126˚ -0.1 28.2 18.5 -0.14 12.05 929 
121˚ -0.06 29.5 19.8 -0.1 13.47 925 
116˚  0.02 28.0 20. 8  0.03 12.9 924 
111˚  0.05 26.9 20.0  0.07 11.52 912 
106˚  0.1 26.5 21.2  0.14 11.36 739 
101˚  0.15 22.3 18.2  0.19  8.21 898 
96˚  0.21 21.0 17.7  0.26  6.91 718 
91˚  0.29 18.7 16.6  0.32  5.48 703 
86˚  0.3 20.7 20.1  0.33  8.16 408 
81˚  0.42 16.2 15.7  0.45  4.91 712 
76˚  0.54 14.9 15.8  0.55  5.3 567 
71˚  0.59 14.2 15.6  0.62  5.25 523 
66˚  0.7 11.9 13.8  0.68  4.76 588 
61˚  0.7 10.9 11.9  0.67  3.33 664 
56˚  0.71 9.8   9.9  0.66  1.14 790 
51˚  0.69 10.0   9.6  0.63 -0.37 793 
46˚  0.64 10.9 10.7  0.56 -1.65 686 
41˚  0.29 15.3 13.0  0.26  0.73 840 
36˚  0.47 13.3 13.1  0.39 -3.5 507 
31˚  0.31 16.1 14.2  0.27 -1.66 300 
26˚  0.12 19.8 14.8  0.13 -3.52 314 
21˚  0.09 18.7 13.7  0.1  1.09 757 
Table A-16. Comparison Statistics for MLNG – PPIN HF Radar Baseline Radial 
Current Speed Pairs (Measured Pattern).   One Radial Bin of the Best Grid Point 

Pairing from MLNG vs. Several Radial Bins from PPIN.    
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 Angels of SCRZ Corr. 

coef 
rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

 Ideal Total  0.65 16.9 18. 7  0.48  0.16 931 
 Measured Total  0.74 12.7 13.1  0.64  0.81 931 

-83º  0.75 18.3 29.7  1.46 -3.57 19 
-78º  0.48 17.1 19.8  0.37 -3.49 26 
-73º  0.78 23. 7 31.6  0.4 -5.46 57 
-68º  0.48 27. 8 33.0  0.32  1.24 89 
-63º  0.63 24.2 31.0  0.46 -2.3 92 
-58º  0.86   9.2 12.2  0.86 -3.78 48 
-53º  0.73 10.1   9.1  0.83  0.59 88 
-48º  0.79   8.7   8.4  0.76  1.88 29 
-43º  0.38 16.2 15.4  0.29 -1.25 36 
-38º  0.47 11.4 11.5  0.37 -1.36 89 
-33º  0.51 12.5 13.8  0.47  1.32 67 

Ideal 

-28º  0.41 10.9 10.5  0.3 -6.72 30 
-83º  0.93   9.8 10.2  0.92 -0.44 19 
-78º  0.71   7.7    7.0  0.84 -0.57 26 
-73º  0.74   9.7 10.1  0.73 -1.62 57 
-68º  0.39 20.4 20.5  0.27  6.48 89 
-63º  0.6 15.1 14.5  0.56  6.19 92 
-58º  0.84   9.6 11.1  0.73  3.71 48 
-53º  0.71 10. 6   9.8  0.8  2.65 88 
-48º  0.7 12.7 14.0  0.51  2.4 29 
-43º  0.74 11.3 12.8  0.54 -2.11 36 
-38º  0.38 12.4 11. 9  0.27 -3.45 89 
-33º  0.41 13.7 13.3  0.29 -2.58 67 

Measured 

-28º  0.57   9.0   9.0  0.45 -5.27 30 
Table A-17. Comparison Statistics for SCRZ HF Radar vs. Drifter Radial Current 

Speed Pairs.  
 

Angles  of MLNG 
Corr. coef 

rms Diff 
(cm/s) 

Residual rms 
(cm/s) Slope Intercept 

# of 
obs 

 Ideal Total  0.74   9.7   9.3  0.71  0.39 987 
 Measured Total  0.72 10.0   9.6  0.7  0.5 987 

130˚  0.64   7.3   8.6  0.35  3.66 17 
135˚  0.58   8. 2   9.3  0.25  7.71 31 
140˚  0.62   7. 5   9.2  0.46  6.18 30 
145˚  0.72   7.7   7.9  0.63  2.9 97 
150˚  0.71   8.8   8.2  0.7  1.37 192 
155˚  0.84   8.7   9.0  0.84 -0.3 115 
160˚  0.86   7.9   9.3  0.8 -3.18 70 
165˚  0.65 13.7 13.7  0.55 -0.36 52 
170˚  0.73 12.5 15.6  0.65 -7.91 33 
175˚  0.56 11.2   9.5  0.67 -3.48 18 
180˚  0.84   7.8   8.4  0.73  0.46 18 
185˚  0.79 11.4 14.0  0.52 -2.76 20 
190˚  0.79   8.9   9.3  0.68 -2.06 34 
195˚  0.8 10.1 10.7  0.68 -1.62 23 
200˚  0.77 11.8 16.6  1.11  5.89 18 
205˚  0.8   8.4 10.2  0.85  4.01 23 

Ideal 

210˚  0.68 10.5 11.6  0.76  3.82 25 



69 

215˚  0.92   5.9   6.1  0.95 -0.98 31 
220˚  0.7 10.3 10.4  0.9  2.51 26 
225˚  0.66   9.7   9.0  0.65  1.08 21 
230˚  0.77   6.2   6.4  0.67  4.29 27 
235˚  0.23 11.6 11.3  0.14 -0.09 26 
240˚  0.41 12.7 14.0  0.29 -4.17 17 

 

245˚  0.89 11.0 18.4  0.72 -8.4 11 
130˚  0.25   7.4   6.9  0.19  3.82 17 
135˚  0.59   9.1 10. 5  0.23  7.72 31 
140˚  0.44   9.6 11.2  0.33  7.24 30 
145˚  0.6   9.0   8.6  0.54  2.11 97 
150˚  0.56 10.6   9.4  0.59  1.44 192 
155˚  0.77   9.9   9.5  0.84 -0.03 115 
160˚  0.87   8. 2   9.8  0.75 -3.21 70 
165˚  0.69 13.3 13.8  0.56 -0.16 52 
170˚  0.87   9.4 12. 4  0.67 -5.84 33 
175˚  0.78   8.9   8.8  0.72 -1.98 18 
180˚  0.91   5.8   6.6  0.8 -0.51 18 
185˚  0.8   7.7   8.3  0.84 -2.61 20 
190˚  0.84   7.6   7.8  0.75 -1.39 34 
195˚  0.85   8.6   9.4  0.79 -2.83 23 
200˚  0.7 12.0 10.7  0.79  0.84 18 
205˚  0.69 11.2 13.5  0.69  5.25 23 
210˚  0.72 10.3 13.3  0.9  5.17 25 
215˚  0.71 11.0 10.7  0.81  2.92 31 
220˚  0.44 13.9 11.7  0.53  2.28 26 
225˚  0.79   7.4   7.1  0.84  1.06 21 
230˚  0.66   7.8   8.0  0.55  4.95 27 
235˚  0.25   8.8   7.7  0.21  0.13 26 
240˚  0.37 10.5 10.6  0.3 -3.4 17 

Measured 

245˚ -0.02 11.1   9.4 -0.01 -3.12 11 
Table A-18. Comparison Statistics for MLNG HF Radar vs. Drifter Radial 

Current Speed Pairs. 
 
 

Angles of NPGS Corr. 
coef 

rms Diff 
(cm/s) 

Residual rms 
(cm/s) Slope Intercept # of obs 

 Ideal Total  0.48 17.4 20.3  0.56 -9.03 547 
 Measured Total  0.79 10.4 11.0  0.67 -1.97 547 

91˚  0.72 11.3 14.6  0.59 -6.26 19 
96˚  0.6 14.9 18.7  0.43 -6.43 58 
101˚  0.55 17.3 21.7  0.52 -8.49 66 
106˚  0.37 16.8 17.7  0.33 -7.62 60 
111˚  0.65 21.1 35.4  0.95 -16.78 53 
116˚  0.37 20.0 22.5  0.58 -12.27 43 
121˚  0.49 20.8 25.8  0.97 -9.26 41 
126˚  0.09 23.9 17.5  0.12 -4.89 15 
131˚  0.57 21.0 27.5  0.87 -11.25   6 
136˚ -0.09 23.3 19.0 -0.11 -13.88   8 

Ideal 

141˚  0.36 13.4 14.2  0.24 -7.83 26 
91˚  0.78   6.8   6.5  0.78 -1.70 19 
96˚  0.71   8.8 10.0  0.57 -3.27 58 

Measured 

101˚  0.88   6.7   7.0  0.79 -1.08 66 
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106˚  0.76   9.6 10.7  0.59 -1.88 60 
111˚  0.87   8.3   8.2  0.87 -0.64 53 
116˚  0.8 11.7 14.0  0.82  2.45 43 
121˚  0.82 13.8 14.4  0.75  0.18 41 
126˚  0.71 15.5 16.1  0.6 -0.39 15 
131˚  0.94   9.2 13.1  0.93 -5.56   6 
136˚  0.96   8.5 12.4  0.53 -6.57   8 

 

141˚  0.51 10.1 10.8  0.36 -6.38 26 
Table A-19. Comparison Statistics for NPGS HF Radar vs. Drifter Radial Current 

Speed Pairs. 
 

 Angles of PPIN Corr. 
coef 

rms Diff 
(cm/s) 

Residual 
rms (cm/s) Slope Intercept # of obs 

 Ideal Total  0.74 11.8 12.0  0.72  1.35 610 
 Measured Total  0.77 10.4   9.7  0.8  0.15 610 

61˚  0.72   9.6 11.2  0.57 -2.54 11 
66˚  0.83 14.1 16.7  0.88  5.12 15 
71˚  0.79 11.3 13.5  0.69  1.94 18 
76˚  0.73 10.4 12.7  0.55 -0.57 11 
81˚  0.63 11.2 13.4  0.45 -1.11 17 
86˚  0.79   8.3   9.1  0.64 -0.68 72 
91˚  0.9   6.6   7.9  0.86  1.82 74 
96˚  0.77 10.0 10.9  0.76  2.33 66 
101˚  0.67 14.3 13.9  0.61 -3.24 49 
106˚  0.5 17.2 17. 4  0.4 -2.45 50 
111˚  0.72   9.4   9.4  0.88  2.47 23 

Ideal 

116˚  0.72   9.2   8.3  0.81 -1.17 10 
61˚  0.87   7.6 10.2  0.66 -6.27 11 
66˚  0.93   9.1   7.9  0.94 -0.41 15 
71˚  0.91   7.2   8. 9  0.79 -2.97 18 
76˚  0.81 11.1 14.6  0.51 -6.50 11 
81˚  0.76   6.9   7.3  0.63 -1.99 17 
86˚  0.85   6.3   6.4  0.79 -0.68 72 
91˚  0.89   6.3   6.0  0.95 -0.27 74 
96˚  0.76   9.5   9.9  0.85  2.23 66 
101˚  0.73 13.4 13.7  0.64 -4.07 49 
106˚  0.63 14.4 14. 9  0.52 -1.95 50 
111˚  0.67 10.3 10.0  0.75  2.67 23 

Measured 

116˚  0.81   7.6   7.3  0.96 -0.2 10 
Table A-20. Comparison Statistics for PPIN HF Radar vs. Drifter Radial Current 

Speed Pairs. 
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